• Title/Summary/Keyword: 쿼드분석

Search Result 47, Processing Time 0.025 seconds

System Identification of Quadrotor IT Convergence UAV using Batch and RLS Estimation Methods (배치추정기법과 RLS추정기법을 사용한 쿼드로터 IT융합 무인항공기 시스템식별)

  • Jung, Sunghun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • UAVs began to be actively applied to so-called 3D jobs, including the autonomous exploration, investigation, mapping, search and rescue, etc. since the mid-2000s. With this global trend, having a precise controllability of the UAV will certainly revolutionize the life of the modern human in the aspect of tremendous applications of the UAV. In the first part, a simplified dynamic model of the UAV identified using system identification techniques is compared with the previously built time-discrete linear model. In the second part, the three parameters of the dynamic model are estimated using the batch and RLS methods. Angular acceleration data of the quadrotor UAV at the hovering maneuver are analyzed and shown to be converging at all time. Also, according to the quadrotor flight data from both experiments and MATLAB simulations, the batch estimation method turns out to be more accurate than the RLS estimation method based on the comparison of final parameter values.

Non-linear Adaptive Attitude Controller Design of Quadrotor UAV (쿼드로터 무인기 비선형 적응 자세제어기 설계)

  • Choi, In-Ho;Park, Mu-Hyuk;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2421-2427
    • /
    • 2012
  • This paper is discussed the design on non-linear adaptive attitude controller for quadrotor UAV. Quadrotor UAV featured to have four rotor, required the special controller to compensate for the model parameter uncertainties as the unstable nonlinear system. In this research, we designed the adaptive controller to compensate for the payload changes even though it is changed with industrial applications. Especially, based on the mathematical model of UAV, non-linear adaptive controller is suggested and the stability is verified using the Lyapunov function and finally proved its performance and effectiveness of update laws with various payload by simulation.

Design Characteristics on the Hybrid Power System for Quad-Tilt Prop (쿼드-틸트프롭 하이브리드 동력시스템 설계 특성)

  • Kim, Keunbae;Lee, Bohwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1196-1199
    • /
    • 2017
  • A series-hybrid power system was designed for quad-tilt prop UAV and the characteristics was analysed. The power system consists of a 4.5kW rotary engine-generator and a li-battery as power sources, a power controller manages the overall power and supplies to the vehicle system. The output power of the engine is to be matched with the generator performance considering mechanical driving loss and generating efficiency, and also loss for charging and discharging of the battery energy. It is applied that the constant speed operation of the engine-generator to minimize overall fuel consumption by integrating the generating power and the battery energy, consequentially the battery capacity and characteristics could be important factors for improvement of the system efficiency.

  • PDF

Performance Comparison of Depth Map Based Landing Methods for a Quadrotor in Unknown Environment (미지 환경에서의 깊이지도를 이용한 쿼드로터 착륙방식 성능 비교)

  • Choi, Jong-Hyuck;Park, Jongho;Lim, Jaesung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.639-646
    • /
    • 2022
  • Landing site searching algorithms are developed for a quadrotor using a depth map in unknown environment. Guidance and control system of Unmanned Aerial Vehicle (UAV) consists of a trajectory planner, a position and an attitude controller. Landing site is selected based on the information of the depth map which is acquired by a stereo vision sensor attached on the gimbal system pointing downwards. Flatness information is obtained by the maximum depth difference of a predefined depth map region, and the distance from the UAV is also considered. This study proposes three landing methods and compares their performance using various indices such as UAV travel distance, map accuracy, obstacle response time etc.

Analysis of Digital Hologram using Quad-tree-based on Fresnelet Transform Interoperability (쿼드트리 기반의 Fresnelet 변환을 이용한 디지털 홀로그램의 분석)

  • Jeon, Kyung-Bin;Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.56-57
    • /
    • 2015
  • 근래 3D산업의 발전으로 디지털 홀로그램 기술이 부각되고 있다. 본 논문에서는 디지털 홀로그램 영상을 쿼드트리형식으로 Fresnelet 변환을 통한 양자화기를 구현하기위해 특징 및 중요도를 분석하는 방식에 대해 제안한다. 디지털 홀로그램 영상을 Fresnelet 변환을 수행한 뒤 부대역 별로 평균에너지에 따른 에너지 분포의 순위를 정하였고, 크기에 따른 히스토그램의 결과를 이용해 향후 디지털 홀로그램 압축 및 전송 기법에 적용할 수 있는 것을 확인 하였다.

  • PDF

Performance evaluation of mobile multicore devices on threading in converting JPEG to animated GIF (JPEG을 Animated GIF로 변환하는 과정에서 스레딩에 따른 멀티코어 모바일 디바이스의 성능 평가)

  • Woo, Hosung;Kim, Kangseok;Kim, Jai-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.328-331
    • /
    • 2013
  • 본 논문에서는 멀티코어 모바일 디바이스에서 최적의 스레드 구성을 측정하기 위해 이미지 코덱을 사용하여 다양한 환경에서 스레드 개수에 따른 인코딩 수행시간을 분석하였다. 인코딩은 Quantization을 사용하여 JPEG 파일들을 하나의 GIF 파일로 변환하는 기능을 수행하며, 듀얼코어와 쿼드코어 안에서 각각의 스레드 개수를 늘려가며 측정하였다. 듀얼코어에서는 스레드 4개였을 경우가 성능이 효율적이였으며, 쿼드 코어에서는 스레드 3개였을 경우가 성능이 효율적이였다. 분석 후 결론은 스레드 개수와 성능은 비례하는 것이 아니며 성능에 크게 영향을 미치지 않는 것으로 확인되었다. 코어와 I/O입출력의 성능 및 데이터 크기에 따라 적당한 스레드 개수를 정하여 사용하는 것이 효율적이다.

Efficient Motion Information Representation in Splitting Region of HEVC (HEVC의 분할 영역에서 효율적인 움직임 정보 표현)

  • Lee, Dong-Shik;Kim, Young-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.485-491
    • /
    • 2012
  • This paper proposes 'Coding Unit Tree' based on quadtree efficiently with motion vector to represent splitting information of a Coding Unit (CU) in HEVC. The new international video coding, High Efficiency Video Coding (HEVC), adopts various techniques and new unit concept: CU, Prediction Unit (PU), and Transform Unit (TU). The basic coding unit, CU is larger than macroblock of H.264/AVC and it splits to process image-based quadtree with a hierarchical structure. However, in case that there are complex motions in CU, the more signaling bits with motion information need to be transmitted. This structure provides a flexibility and a base for a optimization, but there are overhead about splitting information. This paper analyzes those signals and proposes a new algorithm which removes those redundancy. The proposed algorithm utilizes a type code, a dominant value, and residue values at a node in quadtree to remove the addition bits. Type code represents a structure of an image tree and the two values represent a node value. The results show that the proposed algorithm gains 13.6% bit-rate reduction over the HM-1.0.

Control of Quadrotor UAV Using Adaptive Sliding Mode with RBFNN (RBFNN을 가진 적응형 슬라이딩 모드를 이용한 쿼드로터 무인항공기의 제어)

  • Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.185-193
    • /
    • 2022
  • This paper proposes an adaptive sliding mode control with radial basis function neural network(RBFNN) scheme to enhance the performance of position and attitude tracking control of quadrotor UAV. The RBFNN is utilized on the approximation of nonlinear function in the UAV dynmic model and the weights of the RBFNN are adjusted online according to adaptive law from the Lyapunov stability analysis to ensure the state hitting the sliding surface and sliding along it. In order to compensate the network approximation error and eliminate the existing chattering problems, the sliding mode control term is adjusted by adaptive laws, which can enhance the robust performance of the system. The simulation results of the proposed control method confirm the effectiveness of the proposed controller which applied for a nonlinear quadrotor UAV is presented. Form the results, it's shown that the developed control system is achieved satisfactory control performance and robustness.

Prop-blade Cross Section Design for QTP-UAV (쿼드 틸트 프롭로터 무인기용 프롭-블레이드 단면 설계)

  • Kim, Taejoo;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.845-855
    • /
    • 2018
  • Cross section design of a prop-blade is carried out for VTOL(Vertical Takeoff and Landing) Quad Tilt Prop-rotor UAV with a maximum takeoff weight of 55 kg and a maximum cruising speed of 180 km/h. Design procedure for cross section design is established and design requirements for prop-blade are identified. Through the procedure, cross section design is carried out to meet the identified requirements. Main design factors including stiffness, weight per unit length, and elastic axis are obtained by using a finite element section analysis program, and the design weight of the prop-blade is predicted. The obtained design factors are used along with the rotor system analysis program CAMRAD II to evaluate the dynamic stability of prop-blade in operating environment. In addition, the prop-blade load is obtained by CAMRAD II software, and it is used to verify the safety of the prop-blade structure. If the design results are not satisfactory, design changes are made in an iterative manner until the results satisfy the design requirements.

Quad-tree Subband Quantizer Design for Digital Hologram Encoding based on Fresenelet (프레넬릿 기반의 디지털 홀로그램 부호화를 위한 쿼드트리 부대역 양자화기 설계)

  • Seo, Young-Ho;Kim, Moon Seok;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1180-1188
    • /
    • 2015
  • In this paper, we propose a new subband quantizer which is a type of quad-tree for applying to digital hologram compression based on Fresenelet transform. After executing Fresnelet transform to the captured digital holgoram, we analyze effect of the designed quantizer for the reconstructed objects from analyzing average energy of each coefficient and visual importance in all subbands. We analyze distribution of coefficient and set dynamic range for each subband, and then design subband quantizer. For enhancing effectiveness of the designed quantize, we adopt a method using the coefficients which are located out of dynamic range, which are named by exception indices. From this, we can obtain more effective quantizer which has higher performance in a range of σ′ = 5.0.