• Title/Summary/Keyword: 쿨러

Search Result 115, Processing Time 0.024 seconds

A Study on the Reliability Improvement of oil cooler for precision Machine Tools (정밀공작기계용 오일쿨러의 신뢰성 개선 연구)

  • Lee, Seung-Woo;Lee, Hwa-Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.49-54
    • /
    • 2007
  • 신뢰성이란 단기간에 측정되는 성능과는 다른 지표로서 흔히 장기간에 걸쳐 평가되는 품질의 척도이다. Oil Cooler는 공작기계(machine tools)의 주축 및 구동부 등에서 발생하는 열 변형을 제어하는 장치로서 공작기계의 신뢰성 향상을 위해서는 oil cooler의 신뢰성 개선이 이루어져야 한다. 본 연구에서는 oil cooler의 신뢰성 개선을 위해 고장률 데이터베이스를 이용한 신뢰성 예측과 이를 통한 취약부품 분석을 실시하고 신뢰성 시험기를 통한 oil cooler의 신뢰성을 평가하였다. 이를 통해 oil cooler의 정량적 신뢰도를 계산하였으며 신뢰성호 향상을 위한 공정기법을 개발하여 적용하였다. Oil cooler의 신뢰성 개선을 통해 공작기계 및 반도체 제조 장비 등과 같은 제조 시스템의 신뢰성 향상을 기대할 수 있으며, 제안된 기법을 이용하여 다른 기계류 부품의 신뢰성 평가 및 개선에 적용할 수 있다.

Temperature Control for an Oil Cooler System Using PID Control with Fuzzy Logic (퍼지 적용 PID제어를 이용한 오일쿨러 시스템의 온도제어)

  • 김순철;홍대선;정원지
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • Recently, technical trend in machine tools is focused on enhancing of speed, accuracy and reliability. The high speed usually results in thermal displacement and structural deformation. To minimize the thermal effect, precision machine tools adopt a high precision cooling system. This study proposes a temperature control for an oil cooler system using Pill control with fuzzy logic. In the cooler system, refrigerant flow rate is controlled by rotational speed of a compressor, and outlet oil temperature is selected as the control variable. The fuzzy control rules iteratively correct PID parameters to minimize the error and difference between the outlet temperature and the reference temperature. Here, ambient temperature is used as the reference one. To show the effectiveness of the proposed method, a series of experiments are conducted for an oil cooler system of machine tools, and the results are compared with the ones of a conventional Pill control. The experimental results show that the proposed method has advantages of faster response and smaller overshoot.

A Simulation Study of Diesel Engine with Trubocharger and Intercooler (터보 차져와 인터쿨러를 장착한 디젤기관의 시뮬레이션 연구)

  • 한영출
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.123-130
    • /
    • 2000
  • Studies on the turbocharger itself or various aspects generated from turbocharged engine have been made on the performance for the natural aspirated engine equipped with the turbocharger and the intercooler. In this study, the performance prediction program based on turbocharger theory is developed for simulation which may reduced the cost and the trial -and-error time. The program is verified with the experimental results for 11, 000 cc diesel engine with the turbocharger and the intercooler . Also, various factors which are invisible in experiment are predicted using this program.

  • PDF

Heat Transfer and Pressure Drop of $CO_2$ Gas Cooler in a Helically Coiled Tube (헬리컬코일형 $CO_2$ 가스쿨러의 열전달과 압력강하)

  • Kyoung, Nam-Soo;Yu, Tae-Guen;Son, Chan-Hyo;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.246-247
    • /
    • 2005
  • The paper presents the heat transfer characteristics during cooling process of carbon dioxide($CO_2$) in a helically coiled tube. The main components of the apparatus consist of a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section with the inner diameter 4.55 [mm] is a tube in tube type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The main results were summarized as follows : The heat transfer coefficient increases with respect to the decrease of the gas cooler pressure in a supercritical region and the increase of the refrigerant mass flux. The pressure drop decreases in increases of the gas cooler pressure and increases with respect to increases the refrigerant mass flux.

  • PDF

Optimum PI Controller Design for an Oil Cooler System Using GA (GA를 이용한 오일쿨러시스템의 최적 PI제어기 설계)

  • Jung, Young-Mi;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.28-34
    • /
    • 2014
  • This paper deals with optimum PI controller design using genetic algorithm to improve control performance and robustness for an oil cooler system. The optimum PI gain was found to minimize an object function, integrated absolute error, and to satisfy control design specifications such as overshoot and settling time based on practical transfer function of the oil cooler system. The control performance and robustness were investigated by comparing indicial responses and Bode diagram analysis with respect to three kinds of PI gains obtained from different gain decision manners. Moreover, the robustness against to input disturbances, sinusoidal wave form and abrupt single pulse, was evaluated. The computer simulation results showed that the suggested optimum gain can establish desirable control performance and strong robustness with easy design process.

A Study on Performance of Cooling Fan for Auto Transmission Oil Cooler in the Large-Size Diesel Engine (대형 디젤엔진 자동변속기 오일쿨러 냉각팬 성능에 관한 연구)

  • Yi, Chung-Seob;Suh, Jeong-Se;Song, Chul-Ki;Yun, Ji-Hun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.71-76
    • /
    • 2010
  • This study has investigated numerically and experimentally the flow characteristic of air-cooling fan for transmission oil cooler in the large-size diesel engine. Impellers of cooler were composed of eight normal-scale and eight small-scale blades in the zig-zag pattern. In order to increase the discharge pressure of cooling fan, turbo type of fan blade is proposed in the impeller for transmission oil cooler. The fluidic performance of cooling fan has been estimated numerically by using the commercial code and experimentally carried out with reference on AMCA Standard 210-99. As a result, it is confirmed that the numerical result for performance curve is in good agreement with experimental data.

Studies on Performance of CO2 Water Heater by Numerical Modeling (수치적 모델링을 통한 이산화탄소 급탕기의 특성 연구)

  • Park, Han Vit;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Numerical modeling of $CO_2$ water heater was conducted prior to optimal design of medium and large sized $CO_2$ water heater, and the experimental test with small sized $CO_2$ water heater having heat capacity of 4 kW was completed to verify the present numerical model. The present model estimated the experimental data of COP(coefficient of performance), heating capacity, and the hot water outlet temperature within the range of 3% to 8% of mean deviation. As increase of EEV(electric expansion valve) opening area, decreasing of heating capacity and the hot water outlet temperature, and increasing of COP were found in both experimental and numerical investigation.

Experimental Study for Development of Air Eject Defrost Equipment (공기분사식 제상장치 개발에 관한 실험적 연구)

  • Han, In-Geun;Kim, Chang-Yeong;Kim, Jae-Dol;Yun, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.277-284
    • /
    • 2001
  • One of the problems in a refrigerator operation is the frost formation on a cold surface of the evaporator. The frost layer is formed by the sublimation of water vapor when the surface temperature is below the freezing point. This frost layer is usually porous and formed on the cold surface of the evaporator. The frost layer on the surface of a evaporator will make side effect such as thermal resistance. However, these important factors have not been used in determining the defrosting period. Therefore, the proper defrosting operation period based on the new defrosting method is very important, and make a comparison between conventional method like electric defrost and new method in compression work, evaporation pressure, evaporation temperature.

Transient Heat Transfer Analysis on the Evaporator of a Micro-Cooler prior to Roiling (마이크로 쿨러 증발기의 비등 전 과도열전달 해석)

  • Park, Byeong-Gyu;Kim, Geun-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.211-218
    • /
    • 2002
  • It has been investigated for the temperature profile in a planar evaporator of micro-cooler subject to a uniform heat flux prior to tole initiation of boiling. The results of the analysis allow for the determination of applied power levels fur which nucleation is likely to occur only within the vapor grooves of the evaporator while maintaining subcooling in the liquid core, thereby increasing the likelihood of a successful startup. Also, limits are fecund for which additional increases in the applied heat flux do not increase the temperature difference between the vapor grooves and the wick-liquid core interface. This analysis is appropriate for the microscale evaporators of micro-cooler during a fully-flooded startup as well as starter pump designs and micro-CPLs(capillary pumped loops). The results are useful in the initial basic design of microscale heat transfer devices.

A New Design of Sprinkler Branch Outlet for Fire-Extinguishing Purposes and Its Manufacturing Process (소방용 스프링클러 분기관의 설계 개선 및 제조공정)

  • Jun, B.Y.;Shin, S.H.;Lee, M.C.;Suh, K.S.;Joun, M.S.
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.19-25
    • /
    • 2006
  • In this paper, a new design of the sprinkler branch outlet for fire-extinguishing purposes is presented together with its manufacturing process. The conventional three-piece design is improved by a new one-piece design with the help of the manufacturing technology of cold forging. The forging process is simulated and optimized by the rigid-plastic finite element method and the design tryouts are thus minimized. It has been shown through its applications that the presented system is much more economical and structurally stronger.