• Title/Summary/Keyword: 콘텐츠 기반 추천

Search Result 292, Processing Time 0.029 seconds

Multimodal Media Content Classification using Keyword Weighting for Recommendation (추천을 위한 키워드 가중치를 이용한 멀티모달 미디어 콘텐츠 분류)

  • Kang, Ji-Soo;Baek, Ji-Won;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • As the mobile market expands, a variety of platforms are available to provide multimodal media content. Multimodal media content contains heterogeneous data, accordingly, user requires much time and effort to select preferred content. Therefore, in this paper we propose multimodal media content classification using keyword weighting for recommendation. The proposed method extracts keyword that best represent contents through keyword weighting in text data of multimodal media contents. Based on the extracted data, genre class with subclass are generated and classify appropriate multimodal media contents. In addition, the user's preference evaluation is performed for personalized recommendation, and multimodal content is recommended based on the result of the user's content preference analysis. The performance evaluation verifies that it is superiority of recommendation results through the accuracy and satisfaction. The recommendation accuracy is 74.62% and the satisfaction rate is 69.1%, because it is recommended considering the user's favorite the keyword as well as the genre.

Content Knowledge Structure based Collaborative Filtering Recommender Systems (콘텐츠 정보 지식구조를 이용한 협업 추천 시스템)

  • Kim, Junu;Park, Juneyoung;Yi, Mun Y.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.408-411
    • /
    • 2016
  • 애플리케이션에서 고객들에 의해 생성된 평가정보는 해당 콘텐츠에 대한 고객별 선호도 정보로 볼 수 있기 때문에, 개인에게 맞춤형 추천 시스템을 설계하기 위해서 매우 중요하다. 현재 추천 시스템 분야에서 가장 많이 사용되고 있는 사용자 기반 추천 시스템은 사용자의 평점 정보만을 가지고 유사도를 측정하여 추천에 사용하고 있다. 그러나 이러한 평점 정보만을 가지고 사용자 유사도를 도출하는 것은 정밀하지 못할 수 있다. 따라서 본 연구에서는 사용자의 평점 정보 뿐만 아니라 콘텐츠의 내용을 활용하여 사용자의 선호 콘텐츠를 지식구조의 형태로 나타냄으로써 콘텐츠와 사용자의 관계를 유기적으로 표현하였다. 이와 같은 사용자의 지식구조를 바탕으로 사용자간의 유사도를 평가하고 추천에 활용하였고, 실험결과 제시된 방법으로 더 우수한 성능을 얻을 수 있는 것으로 나타났다.

A study of Metadata design for Digital Content Marketplace based on Interactive Media (양방향매체 기반에 디지털콘텐츠 마켓플레이스를 위한 메타데이터 설계에 관한 연구)

  • Kwon, Byung-Il;Moon, Nam-Mee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.155-164
    • /
    • 2009
  • Digital Content Marketplace based on Interactive Media is defmed as the marketplace for content service between contents supplier and consumer through iDTV environment. This Marketplace is increasing interest to u-Life service with Digital Environment. To Interactive Media, it can contribute to enhance its effectiveness by developing various contents and service model in the initial phase of broadcasting-communication convergence. This study designed metadata using Digital Content marketplace based on Interactive Media. Specially the matadata designing include recommendation-tag for supply supplementary content. It can support self-directed action. Through basic metadata with weight value, it is designed to support supplementary content customer to want on the marketplace. Recommendation-System can be built by many method and to recommend the service content including explicit properties using collaborative filtering method can solve limitations in existing content recommendation.

  • PDF

Contents Recommendation Method Based on Social Network (소셜네트워크 기반의 콘텐츠 추천 방법)

  • Pei, Yun-Feng;Sohn, Jong-Soo;Chung, In-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.279-290
    • /
    • 2011
  • As the volume of internet and web contents have shown an explosive growth in recent years, lately contents recommendation system (CRS) has emerged as an important issue. Consequently, researches on contents recommendation method (CRM) for CRS have been conducted consistently. However, traditional CRMs have the limitations in that they are incapable of utilizing in web 2.0 environments where positions of content creators are important. In this paper, we suggest a novel way to recommend web contents of high quality using both degree of centrality and TF-IDF. For this purpose, we analyze TF-IDF and degree of centrality after collecting RSS and FOAF. Then we recommend contents using these two analyzed values. For the verification of the suggested method, we have developed the CRS and showed the results of contents recommendation. With the suggested idea we can analyze relations between users and contents on the entered query, and can consequently provide the appropriate contents to the user. Moreover, the implemented system we suggested in this paper can provide more reliable contents than traditional CRS because the importance of the role of content creators is reflected in the new system.

Contents Recommendation Scheme Considering User Trust in OSN Environments (OSN 환경에서 사용자 신뢰성을 고려한 콘텐츠 추천 기법)

  • Ko, Geonsik;Kim, Byounghoon;Kim, Dae Yun;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.37-38
    • /
    • 2016
  • 온라인 소셜 네트워크(OSN)의 활성화로 인해 다양한 정보가 생성됨에 따라 사용자에 적합한 정보를 선택적으로 제공하기 위한 개인 추천 서비스에 대한 연구가 진행되고 있다. 본 논문에서는 온라인 소셜 네트워크에서 사용자 신뢰성을 고려한 콘텐츠 추천 기법을 제안한다. 제안하는 기법은 추천의 정확성을 향상시키기 위해 신뢰성 있는 사용자를 선별한다. 사용자 신뢰성을 기반으로 유사 사용자를 선별하고 이를 기반으로 협업 필터링을 수행한다.

  • PDF

Personalized Contents Recommendation System Based on Social Network (소셜 네트워크 기반 맞춤형 콘텐츠 추천 시스템)

  • Lee, Seok-Pil
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.98-105
    • /
    • 2013
  • Patterns for generating and consuming contents are various in these days from conventional broadcasting contents to UCC. There are many researches on developing recommendation engines based on user's profile for providing desired contents. In this paper we propose a contents recommendation system using not only user's profile but other's profiles in closed user group of the social network based on patterns for user's consuming contents. The proposed recommendation agent update user's profile using usage history and other's profiles related to the user in the closed user group.

Content Recommendation Techniques for Personalized Software Education (개인화된 소프트웨어 교육을 위한 콘텐츠 추천 기법)

  • Kim, Wan-Seop
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.95-104
    • /
    • 2019
  • Recently, software education has been emphasized as a key element of the fourth industrial revolution. Many universities are strengthening the software education for all students according to the needs of the times. The use of online content is an effective way to introduce SW education for all students. However, the provision of uniform online contents has limitations in that it does not consider individual characteristics(major, sw interest, comprehension, interests, etc.) of students. In this study, we propose a recommendation method that utilizes the directional similarity between contents in the boolean view history data environment. We propose a new item-based recommendation formula that uses the confidence value of association rule analysis as the similarity level and apply it to the data of domestic paid contents site. Experimental results show that the recommendation accuracy is improved than when using the traditional collaborative recommendation using cosine or jaccard for similarity measurements.

A Study on Profile Processing Algorithm based on Sport for All Contents (생활 스포츠 콘텐츠 기반의 프로파일 처리 알고리즘 연구)

  • Ko, Eun-mi;An, Na-Young;Lee, Jae-Dong;Lee, Won-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.302-304
    • /
    • 2016
  • In this paper, we propose the profile processing algorithm based on in-life sports contents. The proposed algorithm is required research for recommending to sport for all contents, and is preceding research to improve reliability of recommendation. So the proposed algorithm processing dynamic profile based on dynamic information for recommendation, and processing weight values that depending on dynamic recommendation classification. The proposed profile processing algorithm is expected to improve satisfaction of contents recommendation.

  • PDF

Personalized University Educational Contents Recommendation Scheme for Job Curation Systems (취업 큐레이션 시스템을 위한 개인 맞춤형 교육 콘텐츠 추천 기법)

  • Lim, Jongtae;Oh, Youngho;Choi, JaeYong;Pyun, DoWoong;Lee, Somin;Shin, Bokyoung;Chae, Daesung;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.134-143
    • /
    • 2021
  • Recently, with the development of mobile devices and social media services, contents recommendation schemes have been studied. They are typically applied to the job curation systems. Most existing university education content recommendation schemes only recommend the most frequently taken subjects based on the student's school and major. Therefore, they do not consider the type or field of employment that each student wants. In this paper, we propose a university educational contents recommendation scheme for job curation services. The proposed scheme extracts companies that a user is interested in by analyzing his/her activities in the job curation system. The proposed scheme selects graduates or mentors based on the reliability and similarity of graduates who have been employed at the companies of interest. The proposed scheme recommends customized subjects, comparative subjects, and autonomous activity lists to users through collaborative filtering.

A Study on Collaborative Filtering Method based on Social Behavior for Performance Contents Recommendation (공연 콘텐츠 추천을 위한 소셜 행위 기반 협업필터링 방법에 대한 연구)

  • Song, Je-O;Kwak, Han-Kyeong;Cho, Jung-Hyun;Lee, Sang-Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.437-438
    • /
    • 2019
  • 스마트폰을 중심으로 한 모바일 기기의 보급과 온라인 소셜 네트워크 서비스의 이용자들이 증가하면서 사용자들은 많은 콘텐츠를 소비하고 공유한다. 이는 콘텐츠 사용자들의 개별적 기호에 맞지 않거나 만족도가 떨어지는 콘텐츠를 소비하게 한다. 이와 같은 문제를 해결하기 위해 소셜 네트워크 사용자에게 적합한 콘텐츠를 추천하기 위한 기법에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 온라인 상에 존재하는 다양한 정보 중에서 공연과 관련한 콘텐츠들을 중심으로 사용자 성향별로 추천을 해줄 수 있는 협업필터링 방법에 대하여 제안한다.

  • PDF