As the mobile market expands, a variety of platforms are available to provide multimodal media content. Multimodal media content contains heterogeneous data, accordingly, user requires much time and effort to select preferred content. Therefore, in this paper we propose multimodal media content classification using keyword weighting for recommendation. The proposed method extracts keyword that best represent contents through keyword weighting in text data of multimodal media contents. Based on the extracted data, genre class with subclass are generated and classify appropriate multimodal media contents. In addition, the user's preference evaluation is performed for personalized recommendation, and multimodal content is recommended based on the result of the user's content preference analysis. The performance evaluation verifies that it is superiority of recommendation results through the accuracy and satisfaction. The recommendation accuracy is 74.62% and the satisfaction rate is 69.1%, because it is recommended considering the user's favorite the keyword as well as the genre.
Proceedings of the Korea Information Processing Society Conference
/
2016.04a
/
pp.408-411
/
2016
애플리케이션에서 고객들에 의해 생성된 평가정보는 해당 콘텐츠에 대한 고객별 선호도 정보로 볼 수 있기 때문에, 개인에게 맞춤형 추천 시스템을 설계하기 위해서 매우 중요하다. 현재 추천 시스템 분야에서 가장 많이 사용되고 있는 사용자 기반 추천 시스템은 사용자의 평점 정보만을 가지고 유사도를 측정하여 추천에 사용하고 있다. 그러나 이러한 평점 정보만을 가지고 사용자 유사도를 도출하는 것은 정밀하지 못할 수 있다. 따라서 본 연구에서는 사용자의 평점 정보 뿐만 아니라 콘텐츠의 내용을 활용하여 사용자의 선호 콘텐츠를 지식구조의 형태로 나타냄으로써 콘텐츠와 사용자의 관계를 유기적으로 표현하였다. 이와 같은 사용자의 지식구조를 바탕으로 사용자간의 유사도를 평가하고 추천에 활용하였고, 실험결과 제시된 방법으로 더 우수한 성능을 얻을 수 있는 것으로 나타났다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.9
no.3
/
pp.155-164
/
2009
Digital Content Marketplace based on Interactive Media is defmed as the marketplace for content service between contents supplier and consumer through iDTV environment. This Marketplace is increasing interest to u-Life service with Digital Environment. To Interactive Media, it can contribute to enhance its effectiveness by developing various contents and service model in the initial phase of broadcasting-communication convergence. This study designed metadata using Digital Content marketplace based on Interactive Media. Specially the matadata designing include recommendation-tag for supply supplementary content. It can support self-directed action. Through basic metadata with weight value, it is designed to support supplementary content customer to want on the marketplace. Recommendation-System can be built by many method and to recommend the service content including explicit properties using collaborative filtering method can solve limitations in existing content recommendation.
As the volume of internet and web contents have shown an explosive growth in recent years, lately contents recommendation system (CRS) has emerged as an important issue. Consequently, researches on contents recommendation method (CRM) for CRS have been conducted consistently. However, traditional CRMs have the limitations in that they are incapable of utilizing in web 2.0 environments where positions of content creators are important. In this paper, we suggest a novel way to recommend web contents of high quality using both degree of centrality and TF-IDF. For this purpose, we analyze TF-IDF and degree of centrality after collecting RSS and FOAF. Then we recommend contents using these two analyzed values. For the verification of the suggested method, we have developed the CRS and showed the results of contents recommendation. With the suggested idea we can analyze relations between users and contents on the entered query, and can consequently provide the appropriate contents to the user. Moreover, the implemented system we suggested in this paper can provide more reliable contents than traditional CRS because the importance of the role of content creators is reflected in the new system.
Proceedings of the Korea Contents Association Conference
/
2016.05a
/
pp.37-38
/
2016
온라인 소셜 네트워크(OSN)의 활성화로 인해 다양한 정보가 생성됨에 따라 사용자에 적합한 정보를 선택적으로 제공하기 위한 개인 추천 서비스에 대한 연구가 진행되고 있다. 본 논문에서는 온라인 소셜 네트워크에서 사용자 신뢰성을 고려한 콘텐츠 추천 기법을 제안한다. 제안하는 기법은 추천의 정확성을 향상시키기 위해 신뢰성 있는 사용자를 선별한다. 사용자 신뢰성을 기반으로 유사 사용자를 선별하고 이를 기반으로 협업 필터링을 수행한다.
Patterns for generating and consuming contents are various in these days from conventional broadcasting contents to UCC. There are many researches on developing recommendation engines based on user's profile for providing desired contents. In this paper we propose a contents recommendation system using not only user's profile but other's profiles in closed user group of the social network based on patterns for user's consuming contents. The proposed recommendation agent update user's profile using usage history and other's profiles related to the user in the closed user group.
Recently, software education has been emphasized as a key element of the fourth industrial revolution. Many universities are strengthening the software education for all students according to the needs of the times. The use of online content is an effective way to introduce SW education for all students. However, the provision of uniform online contents has limitations in that it does not consider individual characteristics(major, sw interest, comprehension, interests, etc.) of students. In this study, we propose a recommendation method that utilizes the directional similarity between contents in the boolean view history data environment. We propose a new item-based recommendation formula that uses the confidence value of association rule analysis as the similarity level and apply it to the data of domestic paid contents site. Experimental results show that the recommendation accuracy is improved than when using the traditional collaborative recommendation using cosine or jaccard for similarity measurements.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.302-304
/
2016
In this paper, we propose the profile processing algorithm based on in-life sports contents. The proposed algorithm is required research for recommending to sport for all contents, and is preceding research to improve reliability of recommendation. So the proposed algorithm processing dynamic profile based on dynamic information for recommendation, and processing weight values that depending on dynamic recommendation classification. The proposed profile processing algorithm is expected to improve satisfaction of contents recommendation.
Recently, with the development of mobile devices and social media services, contents recommendation schemes have been studied. They are typically applied to the job curation systems. Most existing university education content recommendation schemes only recommend the most frequently taken subjects based on the student's school and major. Therefore, they do not consider the type or field of employment that each student wants. In this paper, we propose a university educational contents recommendation scheme for job curation services. The proposed scheme extracts companies that a user is interested in by analyzing his/her activities in the job curation system. The proposed scheme selects graduates or mentors based on the reliability and similarity of graduates who have been employed at the companies of interest. The proposed scheme recommends customized subjects, comparative subjects, and autonomous activity lists to users through collaborative filtering.
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.437-438
/
2019
스마트폰을 중심으로 한 모바일 기기의 보급과 온라인 소셜 네트워크 서비스의 이용자들이 증가하면서 사용자들은 많은 콘텐츠를 소비하고 공유한다. 이는 콘텐츠 사용자들의 개별적 기호에 맞지 않거나 만족도가 떨어지는 콘텐츠를 소비하게 한다. 이와 같은 문제를 해결하기 위해 소셜 네트워크 사용자에게 적합한 콘텐츠를 추천하기 위한 기법에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 온라인 상에 존재하는 다양한 정보 중에서 공연과 관련한 콘텐츠들을 중심으로 사용자 성향별로 추천을 해줄 수 있는 협업필터링 방법에 대하여 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.