• Title/Summary/Keyword: 콘크리트 표면저항

Search Result 134, Processing Time 0.029 seconds

Effect of Initial Flexural Crack on Resistance to Chloride Penetration into Reinforced Concrete Members (초기 휨균열이 철근콘크리트 부재의 염화물침투저항성에 미치는 영향)

  • Yang, Eun Ik;Jin, Sang Ho;Kim, Myung Yu;Choi, Yoon Suk;Han, Sang Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • In this study, the chloride penetration tests were performed for the initially cracked reinforced concrete members. The chloride diffusion characteristics and the critical crack width are compared, and the properties of self-healing are investigated. According to the test results, the chloride penetration resistance was greatly reduced as the surface crack width increased. When the mineral admixtures are added, the chloride penetration resistance of uncracked specimens were effectively increased, however, in case of the blast furnace slag and fly ash, the cracked specimens showed the more reduced resistance than OPC case, inversely. Also, the critical width was $29{\mu}m$, on average, for immersion test. The crack width with $4{\sim}15{\mu}m$ was restored by self-healing, The parts restored by self-healing were seemed to be visually restored, however, the chloride penetration resistance was not restored, perfectly.

A Study on the Evaluation of Carbonation Resistance of Fire Damaged Fiber-Reinforced High Strength Concrete with the Type of Surface Repair Materials (섬유혼입 고강도 콘크리트의 화재 후 표면보수재료의 종류에 따른 중성화 저항성 비교·평가에 관한 연구)

  • Sim, Sang-Rak;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.81-82
    • /
    • 2020
  • In this study, after applying a silicate-based impregnation and polymer-based coating to fire damaged high strength concrete, carbonation resistance was evaluated to compare and evaluate the carbonation depth according to the type of surface repair materials. As a result of the experiment, it was confirmed that the carbonation resistance was increased in the case of the concrete with the surface repair materials compared to the control specimen without the surface repair materials. In particular, in the case of the polymer-based coating agent, it was confirmed that the carbonation hardly progressed.

  • PDF

Performance of Hybrid Fiber Reinforced Concrete at Elevated High Temperature (고온에서 하이브리드 섬유보강 콘크리트의 성능)

  • Won, Jong-Pil;Park, Kyung-Hoon;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.325-333
    • /
    • 2008
  • This study evaluated the mechanical performance, shrinkage crack and fire resistance of hybrid fiber (blended steel and polypropylene fiber with different diameter and length) reinforced concrete at elevated temperature. The compressive, splitting tensile, flexural, plastic shrinkage test were conducted to the evaluate the mechanical properties and the resistance of shrinkage crack. Also, the surface investigation, reduction rate of mass and residual compressive test were performed to evaluate the physical and mechanical properties after 400$^{\circ}C$, 600$^{\circ}C$, 800$^{\circ}C$ and 1,200$^{\circ}C$ exposure. Test results showed that the hybrid fiber reinforced concrete improved the mechanical performance, shrinkage crack and fire resistance. The reduction of performance with a temperature change were high at the temperature of $600\sim800^{\circ}C$.

Evaluation of Corrosion Resistance using Electro-chemical Methods for the High-Durability Concrete exposed to Marine Condition (해양환경에 노출된 고내구성 콘크리트의 전기화학적기법을 이용한 부식저항성 평가)

  • Yang, Eun-Ik;Kim, Myung-Yu;Lee, Dong-Gun;Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.320-328
    • /
    • 2007
  • The durability of marine concrete structures is severely degraded by corrosion due to seawater attack and diffusion of chloride in concrete. The deduction of durability causes high repair cost for maintenance of marine concrete structure. So, the applicability of high-durable materials is investigated to improve the durability in marine concrete structures. For these, the characteristics of corrosion prevention of marine concrete structures mixed with the mineral admixtures(SF, FA and BFS), the modified steel(stainless and coating steel), and corrosion inhibitors are evaluated using electro-chemical methods. As a results of this study, it is quantified for the effect of promotion of durability by high-durability materials in marine concrete structures.

A Study of Skid Resistance Characteristics by Deicing Chemicals (제설제 사용으로 인한 노면 미끄럼저항 특성 연구)

  • Lee, Seung Woo;Woo, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.813-819
    • /
    • 2006
  • Skid Resistance is a index to represent the friction between tire and road surface, which influences driving safety. Skid resistance varies with the conditions of tire, abrasion of road surface, vehicle speed, drying, wet and freezing condition of road surfaces. Especially, freezing occurs when temperature drops below $0^{\circ}C$ followed by snow or rain causes decrease of skid resistance. To recover the decreased skid resistance deicing work is applied. As a results of deicing works, freezing condition is changed into wet condition. However the wet road surfaces containing the remaining deicings agents may not show the skid resistance of normal wet condition. In this study, skid resistances in the condition of freezing, deicing process and deicing agents remained after snow-removal are evaluated. The test results, skid resistance recover quickly when Pre-wetted salt spreading and NaCl was used as deicing method. Skid resistance of Deicing agents remained on the road surface showed that concrete is higher than asphalt. superior effect. Recovery rate of skid resistance by comparison wet condition is 54~80%.

An Experimental Study on Corrosion Behavior in Steel of Concrete Applied with Arc Metal Spray Method Surface Treatment Technology Using EIS (EIS를 이용한 아크 금속용사 표면처리기법이 적용된 강재의 콘크리트 내 부식 거동에 관한 실험적 연구)

  • Yoon, Chang-Bok;Park, Jang hyun;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.87-95
    • /
    • 2020
  • As an experimental study on the corrosion behavior of steel materials to which ATMS method using EIS was applied in concrete, immersion of Ca(OH)2 saturated aqueous solution and NaCl aqueous solution simulating the environment inside concrete The corrosion behavior was tested. The equivalent circuit was derived through the analysis of the Nyquist plot, and the interfacial resistance and the polarization resistance of the Ca(OH)2 aqueous solution were compared, and Al ATMS was the best interfacial resistance and Zn ATMS was the best polarization resistance. After burying ATMS steel material of cement mortar, the initial immersion impedance measurement value was the highest in the Zn ATMS test body in the impedance measurement by the immersion time by immersing it in the NaCl aqueous solution. Al ATMS test piece has the highest impedance and is highly reliable. This is because Al, which has a high ionization tendency, is continuously oxidized in a strong alkaline environment to form a film and protect the steel from permeation of chlorine ions.

Characteristics of Ternary Blended Cement Concrete Using Fly Ash and Silica Fume for Post-Tensioned Concrete Pavement Application (포스트텐션 콘크리트 포장 적용을 위한 실리카흄과 플라이 애시를 사용한 삼성분계 콘크리트의 특성)

  • Choi, Pan-Gil;Shim, Do-Sick;Lee, Bong-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.41-47
    • /
    • 2009
  • Post-tensioned concrete pavement(PTCP) was developed to built long-span concrete pavement(120 m span) and to maintain long-term service life(over 40 years) of concrete pavement. In the present study, research for high-durable concrete was conducted to utilize the advantage of PTCP construction method efficiently. First of all, 20% of fly ash(by binder weight) was replaced to control alkali silica reaction. Second, silica fume was applied to improve the water-permeability and early-age strength. Results of tests for mechanical properties, water-permeability resistance, and surface-scaling resistance of ternary blended cement concrete showed that the early-age strength was improved significantly with addition of silica fume. The water-permeability resistance was improved from "Low" to "Very Low"(ASTM C 1202). However, surface-scaling resistance was decreased with an increase of silica fume, therefore, content of silica fume should be kept in less than 5%(by binder weight) to assure field application considering durability. The results of air-void analysis showed that durability factors were improved since spacing factors were estimated as 250$\pm$15 micron in adjusted mixtures.

Application of Combined-Type Sensors for the Behavioral Measurement of Concrete Beams (콘크리트 보의 거동 측정을 위한 조합형 센서의 활용)

  • Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.454-461
    • /
    • 2003
  • This study addressed a procedure to carry out an experimental study on a behavior of simple and continuous concrete beams. For this purpose, sample concrete beams were fabricated and sensors for the measurement of strains and deflections were attached both on the surface of the beams and inside them. Two types of sensors were used to measure strains associated with loading: electric resistance strain sensors and fiber optic sensors. Displacement gauges were also attached on the bottoms of beams to investigate the behavior of beams more rationally. The behavior of the beams was then evaluated throughout the results measured from different sensors while they were subject to steady loading up to failure. From results of this study, it was found that concurrent use of sensors and displacement gauges is helpful in investigating the behavior of concrete beams more effectively. Especially, combined-type strain sensors specifically fabricated in this experiment were found not to be affected by the occurrence of cracks so significantly and to be very effective in monitoring strains of concrete structure. It was also observed that beams show nonlinear force-displacement relationship and reinforcing bars take charge of resisting the external force once cracks occur in concrete beams.

Durability and Bioassay of a Sulfur Polymer Surface Protecting Agent for Concrete Structures (콘크리트 구조물용 유황폴리머 표면보호재의 내구성능 및 생물독성)

  • Seok, Byoung-Yoon;Lee, Byung-Jae;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.29-36
    • /
    • 2015
  • In this study, to examine the use of sulfur polymer as a coating agent for concrete, durability and hazard evaluations were performed. The result of the evaluation indicated that the chemical resistance of the coating agent for concrete was outstanding against acidic, base, and alkaline solutions. The evaluation of the bond strength after an accelerated weathering test depending on the mixing condition indicated that the most outstanding strength characteristic was obtained when silica powder and fly ash were mixed at the same time. The bond strength exceeded 1 MPa in every mixing condition even after the repeated hot and cold treatment of the coating agent specimen for concrete, and the SFS mix proportion showed the highest bond strength. The examination of the accelerated carbonation and chloride ion penetration resistance of the concrete coated with the coating agent indicated that the specimen coated with the coating agent using silica powder as a filler showed the most outstanding durability. When a fish toxicity test was performed to examine the hazard of the use of the functional polymer as a coating agent for concrete, the functional polymer was found to have no effect on the organisms. When the chemical resistance, freezing and thawing resistance, carbonation, and chloride ion penetration resistance of the coating agent were considered, substituting silica powder and fly ash as the fillers of the functional polymer by 20%, respectively, was the optimal level in the range of this study.

Development of Eco-Concrete Block Consider of Infiltration Effect (투수효과를 고려한 친환경 콘크리트 블록 개발)

  • Moon, Young-Il;Yoo, Kyung-Hee;Yoon, Sun-Kwon;Son, Chan-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.304-304
    • /
    • 2011
  • 최근 도시화에 따른 인구증가와 더불어 도로포장 등 불투수면적의 증가로 인하여 우기시 빗물 침투가 차단되어 도심의 지하수위가 저하되며 토양의 건토화, 열섬현상 등의 문제가 발생하게 되었다. 이러한 문제점에 착안하여 본 연구에서는 투수효과를 최대한 고려할 수 있는 고강도의 친환경 콘크리트 블록(에크스톤 바이오 블록; ECOSTONE-BIO BLOCK)을 개발하였으며 기존 콘크리트 블록의 자연적 빗물침투 억제의 문제점을 일부 개선하였다. 본 블록은 캡슐공법을 사용하여, 공극률은 높이면서(투수성 향상), 강도와 내구성이 유지됨은 물론 캡슐안에 황토성분을 첨가하여, 바이오적인 기능 및 재생골재를 이용한 친환경적 제품으로 투수성, 내구성, 기능성을 극대화 시켰다. 또한 제품표면은 천연 백색돌맹이, 흑색돌맹이의 배합으로 자연석재 느낌을 구현하였으며, 쇼트블라스트 및 커링 표면공정으로 미끄럼저항지수를 조절할 수 있어, 기존 콘크리트 보도블록에 비해 투수율, 내구성, 기능성, 안전성이 우수하여, 안전한 보행환경이 가능한 것으로 분석되었다. 마지막으로, 주변 환경과 잘 어울리도록 디자인된 바이오기능성 친환경 블록으로 도심지역 시공시 투수효과에 따른 지하수고갈방지 및 침수피해에 도움을 주리라 사료된다.

  • PDF