• Title/Summary/Keyword: 콘크리트 펌핑

Search Result 19, Processing Time 0.019 seconds

Suggestion of a Evaluation Method for Variation of Concrete Workability According to Pumping Condition through Lab-Scale Test (펌핑 조건에 따른 콘크리트 작업성 변화 실내 평가 방법 제안)

  • Lee, Jung-Soo;Jang, Kyong-Pil;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.413-420
    • /
    • 2020
  • In this study, a new lab-scale test equipment was developed to evaluate the variation of concrete workability after pumping. The equipment was designed to simulate the pressure and shearing applied to concrete during actual pumping. In order to examine the feasibility of evaluating variation of concrete workability through lab-scale test equipment, real-scale pumping tests and lab-scale tests were performed together. The design strength of concrete used in the both tests was 24, 35, and 60MPa, and the length of pipe used in pumping tests was 130, 304, and 518m. The lab-scale tests were performed in consideration of actual pumping conditions(pressure, shearing, and pumping duration time). The workability(slump or slum flow) of concrete was measured before test, after the pumping test, and after lab-scale test. In all tests, workability of all concrete mixtures decreased. In addition, the results of both tests were measured greatly similarly.

Suggestion of a Model for Filling Coefficient of Hydraulic Cylinder in Concrete Pump (콘크리트펌프 유압실린더의 충진율 모델 제안)

  • Park, Chan-Kyu;Jang, Kyong-Pil;Jeong, Jae-Hong;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.195-202
    • /
    • 2016
  • In general, piston pumps are frequently used for concrete pumping. Filling coefficient signifies the ratio volume of a hydraulic cylinder to volume of concrete inside the cylinder. Therefore, it may be considered as a parameter directly affecting the flow rate and efficiency for concrete pumping. However, accurate analyses on this aspect have not yet been performed. In this paper, the data measured from horizontal pipeline pumping tests for 350m and 548m in length was analyzed to identify the relationships of rheological properties of concrete and stroke time with the filling coefficient. In addition, an equation allowing prediction of the filling coefficient from rheological properties of concrete and stroke time has been suggested.

Prediction of Pumping Friction Resistance Coefficient in Pipe Influenced by Concrete Rheology Properties (콘크리트의 레올로지 특성에 따른 펌핑관내 마찰저항계수의 예측에 관한 연구)

  • Kim, Hyung-Rae;Cho, Ho-Kyoo;Kim, Jung-Chul;Lee, Kewn-Chu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for concrete pumping performance for the rapid construction of super-tall buildings. In this study, a quantitative evaluation of concrete fluid characteristics and surface friction resistance was performed, applying different concrete mix proportions and pumping conditions. To achieve this, we developed a temporary horizontal pumping evaluation system to measure pipe pressure and surface friction characteristics, and performed an experiment to investigate the relations between concrete rheology characteristics and friction resistance in pipe. The experiment found that in terms of the rheology characteristics, plastic viscosity was reduced remarkably after pumping. As well, high regression between the surface friction and pressure gradient was confirmed. This means that it is possible to evaluate the friction resistance between concrete and pipe by means of a pumping system that includes a frictional resistance testing pipe. In addition, high regression between the plastic viscosity of concrete after pumping and friction resistance coefficient was confirmed. Finally, it is considered that pumping pressure can be predicted using the friction resistance coefficient derived in this study, and it has high regression.

기술정보

  • 한국레미콘공업협회
    • 레미콘
    • /
    • no.9 s.25
    • /
    • pp.93-98
    • /
    • 1990
  • PDF

A Study on the Pumping Characteristics according to Pumping Method and Rheology Characteristics of Concrete (콘크리트의 레올로지 특성 및 펌핑조건에 따른 펌프압송특성에 관한 연구)

  • Kwon, Dae-Hun;Jung, Woong-Taek;Kim, Hyung-Rae;Jo, Ho-Kyoo;Jeon, Jun-Young;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.99-101
    • /
    • 2011
  • In order to have pumping technology for high speed construction of tall building, study for quantitative evaluation of flow characteristics and pumpability should be conducted. So, this study evaluate the characteristics among the inner pipe pressure, fresh concrete properties and separated mortar through the continuous pumping test. Then it consider of relations between rheological properties and pumpability. In the result of test, it found that there are high interrelationship between the rheological characteristics which represented plastic viscosity and pressure lose by pipe length.

  • PDF

Development of Evaluation and Prediction Model for Concrete High Speed Pumping (고강도콘크리트의 고속펌핑을 위한 압송성평가 및 예측모델에 관한 연구)

  • Kim, Hyung-Rae;Cho, Ho-kyoo;Jeong, Woong-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.201-203
    • /
    • 2012
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for the evaluation of concrete pumping performance for high speed construction of super-tall building. So, this study focuses on quantitative evaluation of concrete fluid characteristics and surface friction resistance under the change of concrete mix proportion and pumping condition. In this study, we measured the rheology of concrete and pipe pressure and surface friction characteristics when pumping. And, relations between the rheology characteristics of concrete and pumping performance was investigated by experiment. As the result of the experiment, high regression between the surface friction and pressure gradient was confirmed. And, prediction model to evaluate the friction resistance coefficient and pipe pressure reduction coefficient was suggested.

  • PDF

Study on Anti-Washout Properties and Shear-Thickening Behaviors of Surfactant Added Cement Grouts (계면활성제 혼화제를 첨가한 시멘트 그라우트의 수중 불분리 특성 발현과 점도 증가 효과 연구)

  • Jang, In-Kyu;Seo, Seung-Ree;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.480-484
    • /
    • 2012
  • Concrete, the mixture of cement, sand, gravel and water, is a suspension substance extensively used to construct building materials. When a concrete mortar is applied to the underwater construction, the rheology of concrete is of great importance to its flow performance, placement, anti-washout and consolidation. In this research, the anti-washout and rheological properties of concrete have been investigated with concrete admixtures prepared by adding anionic surfactants, cationic surfactants, and polymeric thickeners. The concrete mortar formulated by pseudo-polymeric systems with the electrostatic association of anionic and cationic surfactants, showed high viscosities and suitable anti-washout properties, but poor pumpabilities. The addition of poly methyl vinyl ether to the mixed surfactant system exhibits synergistic effects by improving the concrete mortar properties of the concrete mortar such as fluidity, visco-elastic property, self-leveling, and anti-washout.

연계해석 시 해저터널의 이완하중고 산정을 위한 수치 모델링 비교 연구

  • Yu, Gwang-Ho;Lee, Dong-Hun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.137-146
    • /
    • 2007
  • 해저 지하 구조물을 시공할 경우는 높은 수압 및 침투압 등의 영향이 무시될 수 없으므로 지하저장 공동의 정확한 거동평가를 위해서는 수리-역학적 해석이 수행되어야만 한다. 또한, 실무에서는 암반이완하중을 고려하여 터널의 콘크리트 라이닝을 설계하며, 이를 위해 이완하중고를 터널 주변의 국부안전율 분포를 이용하여 수치해석에 의해 산정하는 방법이 제안된바 있다. 따라서 본 연구에서는 해저터널을 대상으로 수리-역학적 연계해석 시 국부안전율을 이용한 이완하중고 산정 기법의 타당성을 살펴보았다. 이를 위해 3등급 암반을 대상으로 숏크리트 수리특성을 이용한 유도배수방법과 집수정의 펌핑을 이용한 유도배수방법을 이용하여 이완하중고를 산정하고 적용성을 비교하였다. 연구 결과 연계해석 시 해저시설물의 안전율 및 이완하중고를 정확하게 산정하기 위해서는 집수정의 펌핑을 이용하여 유도배수하는 모델링 방법이 보다 정확하고 일관성 있는 결과를 얻을 수 있었다.

  • PDF