• Title/Summary/Keyword: 콘크리트 충전 강관 기둥

Search Result 165, Processing Time 0.024 seconds

Behavior of Beam-to-Concrete Filled Steel Tube Column Rigid Connections (콘크리트충전 각형강관기둥-보 접합부의 거동에 관한 연구)

  • Kim, Cheol Hwan;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.741-748
    • /
    • 1998
  • Experimental studies were carried out with test parameters: diaphragm yield type and beam yield type, the opening hole size of inner steel diaphragm, and the existence of slab in order to understand the behavior of beam-to-concrete filled steel tube column rigid connections under cyclic loading condition. Test results show that the connections have good rotational capacity when the beam yields first and the joints should be designed such that the beam yields prior to the inner diaphragms.

  • PDF

Behavior of Concrete-Filled Square Tubular Beam-Column under Cyclic Load (반복하중을 받는 콘크리트충전 각형강관 보-기둥의 거동)

  • Kang, Chang-Hoon;Moon, Tae-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.387-395
    • /
    • 2000
  • The purpose of this research is to evaluate the capacity of strength and plastic deformation of those members, and provide experimental data on the seismic behavior of these members as a basis for developing guidelines for designing seismically resistant concrete-filled steel tubular columns. Eighteen cantilever-type specimens were tested under constant axial load and cyclically lateral load as models of bottom columns in high-rise building. The parameters studied in the test program included, are width-thickness ratio of steel tube, slenderness ratio (Lo/D) and axial force ratio. From the test results, the effects of parameters on the strength, the deformation capacity, energy absorption capacity are discussed. The specimen flexural capacity under combined axial and lateral loading was found to be almost accurately predicted by criteria AIJ and AISC-LRFD providing conservative results. Therefore KSSC for encased composite column can be applied to the concrete filled column if composite section and elastic modulus are modified according to AIJ and AISC-LRFD. Finally, the proposed flexural capacity considering confinement effects is a food agreement on the tests results.

  • PDF

An analytic study on the bond stress between concrete and steel tube in CFT tublar column (충전원형강관기둥에서 콘크리트와 강관의 부착응력에 관한 해석적 연구)

  • Kang, Joo-Won;Park, Sung-Moo;Kim, Youn-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.101-107
    • /
    • 2005
  • An analytic study on the bond stress between steel tube and concrete in concrete filled steel(CFT) tublar column is presented in this paper. Recently buildings need members which are enhanced durability and ductility. Concrete filled tublar column system is proposed as alternative plan. In this paper, ABAQUS/Standard Version 5.8 which is identified as usefulness for finite element analysis and has various element library is used. The variables in this study are the location and type of shear-connector. The modeling ell contact problem practiced by Contact Pair and Contact Pressure method. In the step of physical bond, it is practiced by Change friction option. After yielding of models, analytic results is less than that of experimental results.

  • PDF

Study on Fire Resistance of Steel Columns made up with CFST by Analysis and Experiment (해석과 실험에 의한 합성강관기둥의 내화성능 연구)

  • Kwon, In-Kyu;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.29-32
    • /
    • 2010
  • 콘크리트 충전 강관기둥부재(이하 CFST)는 대칭성을 유지하는 기하학적 특성과 내부에 충전된 콘크리트의 구조 및 내화성능의 향상으로 최근 초고층 건축물의 주요 요소로 활용되는 추세에 있다. 반면 CFST는 실험적 결과에 의존하는 경향을 보이고 있으나 이는 많은 비용과 시간이 소요되는 단점이 있으므로 강재의 고온특성을 적용한 해석적 결과와의 상관성은 매우 중요한 의미가 있다. 따라서 본 연구의 목적은 CFST 내화성능을 해석 및 실험결과를 활용하여 상호 관계를 파악하고자 한다.

  • PDF

A Parametrical Study on the flexural strength of Concrete-Filled SHS Columns to Composite H-Beam Connections (충전각형강관 기둥-합성 H형강보 접합부 휨성능 결정요인에 관한 연구)

  • Lee, Jong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.385-395
    • /
    • 1999
  • Square hollow section columns and H-section beams have recently been increasing1y used. Rigid column-beam connections cannot be made for the structural system and thus some measures to improve the rotational stiffness of connections should be developed. For this purpose, several types of connections. such as H-section beams connected to concrete-filled square hollow section columns, have been contrived and put to experiment. Since the experimental works are usually difficult and expensive. Particularly test of all the types of connections with similar behavior may not be feasible. Instead, the numerical analysis will be adopted predict the flexural stiffness of connections. In this work, FEM modeling techniques are examined and parametric analysis study has been carried out. The major parameters considered are concrete strength, thickness of steel column, magnitude and eccentricity of axial forces.

  • PDF

Ultimate Resisting Capacity of Axially Loaded Circular Concrete-Filled Steel Tube Columns (축력이 재하된 원형 콘크리트 충전강관 기둥의 최대 저항능력)

  • Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • The axial load on the concrete-filled steel tube (CFT) column produces confinement stress, which enhances strength of the core concrete. The amount of strength increase in concrete depends on the magnitude of produced confinement stress. From nonlinear analyses, the ultimate resisting capacity of the CFT columns subjected to axial loads was calculated. Nonlinear material properties such as Poisson's ratio and stress-strain relation were considered in the suggested model, and the maximum confining stress was obtained by multi axial yield criteria of the steel tube. This proposed model was verified by comparing the analytical results with experimental results. Then, regression analyses were conducted to predict the maximum confining stress according to D/t ratio and material properties without rigorous structural analysis. To ensure the validity of the suggested regression formula, various empirical formulas and Eurocode4 design code were compared.

An Experimental Study on Stength of Slender Square Tube Columns Filled with High Strength Concrete (고강도콘크리트충전 각형강관장주의 내력에 관한 실험적 연구)

  • Seo, Seong Yeon;Chung, Jin An
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.471-479
    • /
    • 2002
  • In this paper, 18 square CFT columns filled with high-strength concrete were tested under concentric or eccentric axial loading. Two parameters of the experimental program included the buckling length-section depth ratio ($L_K$/D) and the eccentricity of the appled compressive load (e). In additon, mechanical properties such as the compressive concrete strength and compressive and tensile steel strength were measured and incorporated into the material models for the stress-strain relationships of concrete and steel. This model was used in an elasto-plastic analysis in order to predict the behavior of the slender CFT columns. Observtions of the failure mode during the tests under axial loadig were also presented. The strengths obtained from the analysis. Recommendations for Design, and Constructions of CFT structures were presented, as verified by the experimental results.

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

Axial Compression of Stub Columns for Concrete-filled Square Steel Tubes (일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동)

  • Yoo, Yeong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.617-624
    • /
    • 2021
  • Concrete-filled steel tubular columns can improve the strength and deformation capacity of structures, thereby enabling the development of efficient structures. The Korean design standard (KDS41) regarding concrete-filled steel tubular structures, established by the architectural institute of Korea in 2005, was revised in 2009 and 2016. The objective was to understand the compressive strengths and deformation capacity of stub columns for concrete-filled square steel tubes under uniaxial compression and validate the KDS41's standard code for necessary corrections. Experiments were conducted on 26 specimens with parameters, such as the width-thickness ratio of cold-formed square tubes. The following values of the stub columns for concrete-filled square steel tubes were obtained: compressive strengths, relationship between the axial load and axial displacement, and failure modes. An analysis of these results enabled an understanding of the concrete-filled effect and the influence of the wide-thickness ratio. The compressive strengths of filled concrete saw a 9% increase compared to a state of uniaxial stress, which must be noted in a future edition of KDS41. After benchmarking the results regarding square steel tubes generated by cold forming to the guidelines provided by the KDS41, the KDS41's value of 2.26 for the limiting width-to-thickness ratio for the compact section was found to be inflated. With a safety concern, this paper proposes a more conservative value of 1.35.

Parametric Study on design Variables of Rectangular Concrete Filled Tubular Columns with High-Strength Steel (유한요소해석에 의한 고강도 강재를 사용한 각형 콘크리트 충전 강관 기둥의 설계인자 분석)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Yun-Cheol;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.10-21
    • /
    • 2015
  • For the safe design of steel-concrete composite structure, usable yield strength of steels are limited in most of design standard. However, this limitation sometimes cause the uneconomical design for some kind of members such as slender columns which was affected by elastic buckling load. For the economical design for slender columns, parametric study of RCFT (Rectangular CFT) with high-strength steel is conducted, especially investigating the limitation of yield strength of high-strength steels. Using ABAQUS, finite element analysis program, the finite element model was constructed and calibrated with experimental study for RCFT with high strength steel which have yield strength up to 680MPa. Investigated design parameters are yield strength of steel, compressive strength of concrete, steel thickness and slenderness ratio. The effect of design parameters were compared with design standard, KBC-09. From the parametric study with 54 models and previous test specimens, RCFT can be safely design with higher yield strength of steels than currently limited by KBC for large range of slenderness ratio.