• Title/Summary/Keyword: 콘크리트 충전 강관 기둥

Search Result 165, Processing Time 0.023 seconds

An Experimental Study for Development of Details and Design Method of CFT Column-to-RC Flat Plate Connections (콘크리트 충전각형강관 (CFT)기둥과 철근콘크리트 무량판 접합부 상세 및 설계법 개발을 위한 실험연구)

  • Lee, Cheol Ho;Kim, Jin Won;Oh, Jeong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.481-490
    • /
    • 2005
  • This paper summarizes the full-scale test results on the CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. Constructing an underground parking floor as a flat plate system is often regarded as essential for both cost savings and rapid construction. Efficient details for CFT-column-to-flat-plate connections have not been proposed yet, however, and their development is urgently needed. Based on some strategies that maximize economical field construction, several connecting schemes were proposed and tested based on a full-scale model. The test results showed that the proposed connection details can exhibit punching shear strength and connection stiffness comparable to or greater than those of their R/C flat plate counterpart.

Nonlinear Analysis of a Circular CFT Column Considering Confining Effects (구속 효과를 고려한 원형 CFT 기둥의 비선형 해석)

  • Han, Taek-Hee;Won, Deok-Hee;Yi, Gyu-Sei;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • An analysis program to predict the behavior of a concrete filled steel tube column (CFT) was developed. It considered confining effect, material nonlinearity, strain hardening of steel, and initial axial load. With the developed program, axial load-bending moment interaction analyses, moment-lateral displacement relation analyses, and lateral load-lateral displacement relation analyses were performed. For the verification of the developed program, analysis results were compared with the test results from the other researches. The verified results showed that the developed program predicted the behavior of the CFT column with agreeable accuracy. And they showed that it is necessary to consider the confining effect for the reasonable analysis of the CFT column. A simple parametric study was performed and it chose the strength of unconfined concrete and the thickness of a steel tube as the major parameters affecting the behavior of the CFT column. The parametric analysis results showed that the CFT column had higher strength and smaller ductility by increasing the strength of concrete. But the CFT column showed higher strength and larger ductility by increasing the thickness of the steel tube.

Evaluation of Seismic Performance for an Internally Confined Hollow CFT Column (내부 구속 중공 CFT 기둥의 내진 성능 평가)

  • Han, Taek Hee;Kim, Sung Nam;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • Column tests were performed for a new type of column, the internally confined hollow concrete filled tube column (ICH CFT column), to evaluate its seismic performance. The seismic performances for two types of ICH CFT columns and a general solid RC column were evaluated and compared by quasi-static tests. The displacements and the lateral loads of column specimens were measured during tests. Ductilities, absorbed energy, equivalent damping ratios, damage indices were calculated from recorded data. From the test results, the ICH CFT column shows superior seismic performances with double moment capacity and larger energy absorbing capacity over that of a solid RC column.

Flexural strength of high-strength concrete filled steel tube columns strengthened by carbon fiber sheets (탄소섬유쉬트로 보강한 고강도 콘크리트 충전강관(CFT) 기둥의 휨내력에 관한 연구)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The CFT (Concrete Filled Steel Tube) columns became popular in high rise building construction due to not only its composite effect but also economic advantage. However, it has been pointed out in various previous researches that the current practice in CFT columns may lead the steel tube to probable local buckling at critical sections of the columns right after yielding. To resolve such a problem, the TR-CFT (Transversely Reinforced Concrete Filled Steel Tube) column is proposed to control or at least delay the local buckling state at the critical section by wrapping the CFT columns with carbon fiber sheet. The validity of the proposed column system is validated through the present paper by observing the experimental performance and comparing it with the analytical prediction of the TR-CFT columns with hish strength concrete. It is also shown that the current design code provisions such as ACI-318, in which the contribution of concrete confining effect filled in steel tube is not appropriately accounted for, may contain too much conservatism.

Fire Resistance of Circular Internally Confined Hollow Reinforced Concrete Column (원형 내부 구속 중공 철근콘크리트 기둥의 내화 성능)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Gyu-Sei;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2010
  • Reinforced-concrete (RC) columns are frequently designed and constructed. other types of columns includes composite types such as concrete-filled tube columns (CFT). Hollow RC columns may be effective in reducing both the self weight of columns and total amount of materials used. This is due to the fact that a hollow RC column possesses larger moment of inertia than that of solid RC columns of same cross sectional area. Despite the effectiveness the hollow RC column has not been popular because of its poor ductility performance. While the transverse reinforcements are effective in controlling the brittle failure of the outside concrete, they are not capable of resisting the failure of concrete of inner face which is in unconfined state of stress. To overcome these drawbacks, the internally confined hollow reinforced concrete (ICH RC), a new column type, was proposed in the previous researches. In this study, the fire resistance performance of the ICH RC columns was analyzed through a series of extensive heat transfer analyses using the nonlinear-material model program. Also, effect of factors such as the hollowness ratio, thickness of the concrete, and thickness of the internal tube on the fire resistance performance were extensively studied. Then the factors that enhance the fire-resistant performance of ICH RC were presented and analyzed.

Structural Characteristics of Beam-to-Column Connection of Circular CFT Columns by Using Mixed Diaphragms (혼합다이아프램 형식을 적용한 콘크리트충전 원형강관 기둥-보 접합부의 구조적 특성)

  • Wang, Ning;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.299-310
    • /
    • 2015
  • CFT(Concrete-Filled Tube) structures have problems at processing cause closed section and concrete filling problems. In this study, a CFT structure that uses different types of diaphragms in its upper and lower connections to improve the concrete filling was tested and analyzed via the FEM program. Implementation of variable analysis of EP-T type to find out the reason that effect on the resistance force of the connection. As a result, through experiments and analysis investigated the structural characteristics of circular CFT beam-to-column connection.

Tensile Behavior of CFT Column-to-H beam Connections with External T-shaped Stiffeners (T-스티프너 보강 콘크리트충전 각형강관 기둥-H형강 보 접합부의 인장거동)

  • Kang, Chang Hoon;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.121-130
    • /
    • 2002
  • This paper presents the tensile behavior of a Concrete-Filled Square Steel Tubular (CFT) column to H-beam welded connections. These connections were externally reinforced with T-shaped stiffeners at the junction of CFT column and beam. The tensile loading tests of eighteen tee-joint connections and finite element analysis using ANSYS were carried out. The main parameters of tests are as follows: 1) the thickness of Square Steel Tubular Column : 6 mm, 9 mm, 2) the strength ratios of tensile strength of horizontal stiffeners to tensile strength of beam flange : 70 %, 100 %, 150 %, 3) the strength ratios of shear strength of vertical stiffeners to tensile strength of beam flange : 80 %, 115 %, 160 %. The results of the tests demonstrate that overall behavior and failure modes of all the specimens are governed mainly by the horizontal stiffeners rather than the vertical stiffeners, and the vertical stiffener played only a role in transferring load introduced from beam to column.

Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns (콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.411-422
    • /
    • 2017
  • In this study, to investigate the seismic performance of beam-column joints using concrete-encased and -filled circular steel tube(CEFT) columns, two types of tests were performed: (1) column - flange tension test and (2) beam - column joint cyclic load test. In column - flange tension test, test parameters were concrete encasement and connection details: flange width and strengthening rebar. Five specimens were tested to investigate the load-carrying capacity and the failure mode. Test results showed that increase of flange width from 200mm to 350mm result in increase of connection strength and stiffness by 61% and 56%, respectively. Structural performances were further improved with addition of tensile rebars by 35% and 92%, respectively. In cyclic loading test, three exterior beam-column joints were prepared. Test parameters were strengthening details including additional tensile rebars, thickened steel tube, and vertical plate connection. In all joint specimens, flexural yielding of beam was occurred with limited damages in the connection regions. In particular, flexural capacity of beam-column joint was increased due to additional load transfer through tube - beam web connection. Also, connection details such as increase of tube thickness and using vertical plate connection were effective in improving the resistance of panel zone.

Evaluation of P-M Interaction Curve for Circular Concrete-Filled Tube (CFT) Column (원형 콘크리트 충전 강관(CFT) 기둥의 P-M 상관 곡선 평가)

  • Moon, Jiho;Park, Keum-Sung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.355-365
    • /
    • 2014
  • Concrete-filled tubes (CFTs) have been used in civil engineering practices as a column of buildings and a bridge pier. CFTs have several advantages over the conventional reinforced concrete columns, such as rapid construction, enhanced buckling resistance, and inherited confinement effect. However, CFT component have not been widely used in civil engineering practice, since the design provisions among codes significantly vary each other. It leads to conservative design of CFT component. In this study, the design provisions of AISC and EC4 for CFT component were examined, based on the extensive test results conducted by previous researchers and finite element analysis results obtained in this study. Especially, the focus was made on the validation of P-M interaction curves proposed by AISC and EC4. From the results, it was found that the current design codes considerably underestimated the strength of CFT component under general combined axial load and bending. Finally, the modified P-M interaction curve was proposed and successfully verified.

Experimental Study on High Strength and high Flowable Concrete Filled Steel Tube for Practical Construction Application (합성강관 충전용 고강도-초유동 콘크리트의 현장적용을 위한 실험적 연구)

  • 윤영수;이승훈;성상래;백승준
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.151-161
    • /
    • 1996
  • This paper presents a series of tests to produce the h~gh quality concrete to be filled Inside the steel tube columns. Thls concrete filled steel tube system requires not only the high strength, but a150 the flowable concrete. Laboratory test has been performed to clarlfy the material characteristics and to produce the optlmal mix design proportion. Full scale site mock up test has been then carried out to slnlulate the actual construct~on conditions including the product~on of concrete at the rermcon batch plant, transportation to the construction site, proper workabil~ ty and man power required , 4ddit1onal mock up test has finally been performec to irivesti gate any unfavorable construction s~tuatioils since the actual concrete placement has been sched uled in cold weather period, so that the high quality concrete construction is convinced to be successfully carried out.