• Title/Summary/Keyword: 콘크리트 충전

Search Result 557, Processing Time 0.029 seconds

Full Scale Tests of Concrete Filled Steel Tube Column using High Fluidity Concrete (고유동 콘크리트를 이용한 콘크리트 충전강관 기둥의 실물대 시공실험)

  • Kim Ook-Jong;Lee Do-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.222-227
    • /
    • 2001
  • Full scale construction tests of CFT(concrete filled steel tube) column to solve construction problem and to confirm quality were performed in apartment site. To improve construction efficiency, the tests has been accomplished two stages after the tests for material mixing design had been completed. In the first stage, the experimental variables were the placing methods, existence of guiding pipe, placing velocity and drop height and the height of specimen were $3.6{\cal}m$. In the second stage, Filling steel tube of 9.6m height with concrete was performed by two ways, that is, the pump-up method and the dropping method. The filled condition of the concrete and concrete strength distribution according to the column height were checked and the quality of the CFT column was confirmed.

  • PDF

Development of Non-linear Finite Element Modeling Technique for Circular Concrete-filled Tube (CFT) (원형 콘크리트 충전 강관 (CFT)의 비선형 유한 요소 해석 기법 개발)

  • Moon, Jiho;Ko, Heejung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.139-148
    • /
    • 2012
  • Circular concrete-filled tubes (CFTs) are composite members, which consists of a steel tube and concrete infill. CFTs have been used as building columns and bridge piers due to several advantages such as their strength-to-size efficiency and facilitation of rapid construction. Extensive experimental studies about CFT have been conducted for past decades. However experimental results alone are not sufficient to support the engineering of these components. Complementary advanced numerical models are needed to simulate the behavior of CFT to extend the experimental research and develop predictive tools required for design and evaluation of structural systems. In this study, a finite element modeling technique for CFT was developed. The confinement effects, and behavior of CFT subjected various types of loading predicted by the proposed finite element model for CFT were verified by comparing with test results.

An Experimental Study on the Ensuring the Fire Resistance Performance of Non-Refractory Coating CFT (무내화피복 CFT 공법의 내화성능 확보를 위한 실험적 연구)

  • Lee, Ji-Hwan;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.273-280
    • /
    • 2015
  • In this study, tests were carried out to find out a method to ensure the fire resistance performance of high-performance non-refractory coating CFT columns. For the high performance concrete fabrication with 100MPa, blast furnace slag(BS) and steel and nylon fibers were used. It was found that the partial replacement with BS improved the fire resistance performance of the concrete. Based on the results of lab tests, the large fire test was conducted. For this test, the CFTs with the size of ${\phi}500{\times}4,200mm$ and the reinforcement of SS 400 steel were prepared and they were subjected to a loading condition. It was found that as the level of load increased, the level of fire resistance decreased. For example, In with the loading condition of 2000kN the CFT could resist the fire for over 240 minutes, whereas, with the loading condition of 3,000kN and 4000kN applying to equivalent CFTs, the resisting time against fire were 184 minutes, and 120 minutes, respectively.

An Evaluation of Flexural Strength of Hollow Concrete Filled FRP Tube Piles (중공형 콘크리트 충전 FRP Tube 말뚝의 휨강도 산정)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.204-211
    • /
    • 2022
  • In this study, Hollow Concrete Filled FRP Tube Pile(HCFFT Pile) was proposed as a model to utilize the advantages of composite piles and solve the problem of corrosion, which is a disadvantage of CFT piles, and a numerical analysis model was developed to analyze their behavior. The strain compatibility method was applied considering the damage plastic behavior of concrete, the yield plastic behavior of steel, and the elastic behavior of FRP. The flexural strength calculation equation of HCFFT piles was proposed considering the change of the FRP tube section according to the distance from the neutral axis. The flexural strength calculation equation, numerical analysis results, and experimental results were compared and analyzed to verify their adequacy. The results of this study can be used as basic data for the optimal design of various HCFFT piles using FRP.

An Experimental Study on Concrete Filled Steel Tube Column of Mock-up test take advantage of the High Strength Concerete(over the 80MPa) (초고강도 콘크리트(800kgf/$\textrm{cm}^2$ 이상)를 이용한 콘크리트충전 강관기둥에 대한 실물대 실험)

  • 이장환;공민호;전판근;정근호;이영도;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.21-25
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence, to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete (800kgf/$\textrm{cm}^2$) especially for CFT through the data from the real size mock-up.

  • PDF

Flexural Strength Design Equation of Concrete Filled Steel Tube(CFT) Column Reinforced by Carbon Fiber Sheet (탄소섬유쉬트로 보강한 콘크리트 충전강관(CFT) 기둥의 휨내력식)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.29-36
    • /
    • 2008
  • The TR-CFT(Transversely Reinforced Concrete Filled Steel Tube) column is proposed to control or at least delay the state of local buckling at the critical section by wrapping the CFT columns with a carbon fiber sheet. In this study, an equation to determine the flexural strength of TR-CFT is proposed. The ACI-318 code, in which the contribution of the confining effect in the concrete filled steel tube is not appropriately accounted for, may be conservative. Therefore, flexural strength design equations for CFT columns and TR-CFT columns are proposed based on the concrete strain-stress curve, which contributes to the confining effect. Finally, the predicted results for the CFT and TR-CFT columns are shown to be in good agreement with actual test results.

Status and Future Prospect of Precast Products Using Polymer Concrete (폴리머 콘크리트 공장제품의 개발 현황 및 전망)

  • 연규석;주명기
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.49-54
    • /
    • 2002
  • 아직까지 우리나라에서 폴리머 시멘트 콘크리트가 콘크리트와 같이 광범위하게 사용되고 있는 것은 아니지만 건설재료로서의 사용이 증가하는 추세에 있다. 폴리머 콘크리트의 제조에는 결합재로서 물이나 시멘트가 전혀 사용되지 않고 수지(resin)만을 사용한다. 각종 수지가운데 많이 이용되고 있는 것은 에폭시 수지, 불포화 폴리에스테르 수지, 우레탄 수지, 퓨란 수지 등이 있다. 그러나 원료사정이 국가마다 다르기 때문에 폴리머 콘크리트의 결합재로 사용되는 액상수지 역시 차이가 있다. 우리나라의 경우는 에폭시수지, 불포화 폴리에스테르 수지 및 우레탄 수지가 주로 사용되고 있으며, 가까운 일본의 경우는 폴리머 콘크리트의 결합재로서 워커 빌리티, 저온경화성, 내후성 등이 우수한 메타크릴산 메틸도 사용되고 있다. 또한 폴리머 모르타르 및 콘크리트의 경화반응에 방해를 주지 않도록 충전재 및 골재 등은 건조시켜 함수율이 0.5 % 이하가 되도록 사용하고 있으나, 지금은 흡수제, 가교제 등의 혼화재료가 개발되어 함수율을 3% 까지 허용하고 있으며, 지금까지 불가능하게 생각되었던 폴리머 콘크리트에 대한 레디믹스트 콘크리트(레미콘) 개발도 흥미를 끌고 있다.(중략)

Engineering properties of Permeable Polymer Concrete with Fly Ash and CaCO3 (플라이 애쉬와 탄산칼슘을 혼입(混入)한 투수성(透水性) 폴리머 콘크리트의 공학적(工學的) 성질(性質))

  • Sun, Chan Yong;Han, Young Kyu;Youn, Joon No;Kim, Kyung Tae;Seo, Dae Seuk;Nam, Ki Sung
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.278-284
    • /
    • 1998
  • This study was performed to evaluate the engineering properties of permeable polymer concrete with Fly Ash and $CaCo_3$. The following conclusions were drawn; 1. The unit weight was in the range of $1,830{\sim}1,932kgf/m^3$, the unit weights of those concrete were decreased 16~20% than that of the normal cement concrete. 2. The highest strength was achieved by fly ash 50% and $CaCo_3$ 50% filled permeable polymer concrete, it was increased 26% by compressive strength, 121% by tensile strength and 275% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2,805~2,904m/s, which was showed about the same compared to that of the normal cement concrete. Fly ash 50% and $CaCo_3$ 50% filled permeable polymer concrete was showed higher pulse velocity.

  • PDF

Experimental Study on High Strength and high Flowable Concrete Filled Steel Tube for Practical Construction Application (합성강관 충전용 고강도-초유동 콘크리트의 현장적용을 위한 실험적 연구)

  • 윤영수;이승훈;성상래;백승준
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.151-161
    • /
    • 1996
  • This paper presents a series of tests to produce the h~gh quality concrete to be filled Inside the steel tube columns. Thls concrete filled steel tube system requires not only the high strength, but a150 the flowable concrete. Laboratory test has been performed to clarlfy the material characteristics and to produce the optlmal mix design proportion. Full scale site mock up test has been then carried out to slnlulate the actual construct~on conditions including the product~on of concrete at the rermcon batch plant, transportation to the construction site, proper workabil~ ty and man power required , 4ddit1onal mock up test has finally been performec to irivesti gate any unfavorable construction s~tuatioils since the actual concrete placement has been sched uled in cold weather period, so that the high quality concrete construction is convinced to be successfully carried out.

An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement (저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Kim, Heoun;Park, Jin-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.135-147
    • /
    • 2009
  • In order to develop the ultra high strength concrete over 400Mpa at 28 day, Low-heat portland cement, ferro-silicon, silica-fume and steel fiber were mixed and tested under the special autoclave curing conditions. Considering the influence of Ultra high strength concrete. normal concrete is used as a comparison with low water-cement ratio possible Low-heat portland cement. Additionally, as a substitution of aggregates, we analyzed the compressive strength of Ferro Silicon by making the states of mixed and curing conditions differently. In addition, SEM films testified the development of C-S-H hydrates of Type III & Type IV, and tobermolite, zonolite due to the high temperature, high pressure of autoclave curing. Fineness of aggregate, filler and reactive materials in concrete caused 420Mpa compressive strength at 28day successfully.