• Title/Summary/Keyword: 콘크리트 중성화

Search Result 177, Processing Time 0.023 seconds

Durability of Polymer-Modified Mortars Using Acrylic Latexes with Methyl Methacrylate (MMA계 아크릴 라텍스를 혼입한 폴리머시멘트 모르타르의 내구성)

  • Hyung Won-Gil;Kim Wan-Ki;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.411-418
    • /
    • 2005
  • Polymer-modified mortar and concrete are prepared by mixing either a polymer or monomer in a dispersed, or liquid form with fresh cement mortar and concrete mixtures, and subsequently curing, and if necessary, the monomer contained in the mortar or concrete is polymerized in situ. Although polymers and monomers in any form such as latexes, water-soluble polymers, liquid resins, and monomers are used in cement composites such as mortar and concrete, it is very important that both cement hydration and polymer phase formation proceed well the yield a monolithic matrix phase with a network structure in which the hydrated cement phase and polymer phase interpenetrate. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete. The purpose of this study is to obtain the necessary basic data to develope appropriate latexes as cement modifiers, and to clarify the effects of the monomer ratios and amount of emulsifier on the properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate(MMA/BA) and methyl methacrylate-ethyl acrylate(MMA/EA) latexes. The results of this study are as follows, the water absorption, chloride ion penetration depth and carbonation depth of MMA/BA-modified mortar are lowest. However, they are greatly affected by the polymer-cement ratio rather than the bound MMA content and type of polymer.

A Study on the Strength, Drying Shrinkage and Carbonation Properties of Lightweight Aggregate Mortar with Recycling Water (회수수를 사용한 경량골재 모르타르의 강도, 건조수축 및 중성화 특성에 관한 연구)

  • Oh, Tae-Gue;Kim, Ji-Hwan;Bae, Sung-Ho;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.391-397
    • /
    • 2020
  • This study is to compare and analyze the strength, drying shrinkage and carbonation properties of lightweight aggregate mortar using recycling water as prewetting water and mixing water. The flow, compressive strength, split tensile strength, drying shrinkage and carbonation depth of lightweight aggregate mortar with recycling water were measured. As test results, the mortar flow was similar in all mixes regardless of the recycling water content. The compresseive strength of the RW5 mix with 5% recycling water as prewetting water and mixing water was the highest value, about 53.9 MPa after 28 days. In addition, the tensile strength of lightweight mortar was about 3.4 to 3.8 MPa, indicating 7 to 9% of the compressive strength value regardless of recycling water content. In the case of drying shrinkage, the RW2.5 mix using 2.5% recycling water showed the lowest shrinkage rate as about 0.107% at 56 days. The drying shrinkage of the plain mix without recycling water was relatively higher than the RW2.5 and RW5 mix. The RW5 mix showed lowest carbonation depth compared to other mixes. In this study, the RW5 lightweight aggregate mortar with 5% recycling water exhibits excellent compressive strength and carbonation resistance. Therefore, it is considered that if the recycling water, a by-product of the concrete industry, is properly used as prewetting water and mixing water of lightweight mortar and concrete, it will be possible to increase the recycling rate of the by-product and contribute to improve the property of lightweitht aggregate mortar and concrete.

Analysis of Fundamental Properties of Concrete for Rising up Fly Ash Contents (플라이 애시의 치환범위 상향을 위한 콘크리트의 기초적 특성 분석)

  • Han, Cheon-Goo;Park, Yong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.89-96
    • /
    • 2011
  • In this study, increasing the range of replacement rate of FA with concrete properties were analyzed to provide basic data of FA replacement 0-40 % and curing temperature $5-35^{\circ}C$ range. As a result of the increased fluidity in proportion to the increase in FA, but decreased air. Setting time delayed at replacement rate increases and low temperature, simple insulation temperature history of the FA up to 40 % replacement rate increases the maximum temperature was low $8^{\circ}C$, the highest temperature reaching time delay of 13 hours. FA replacement up stream of the curing temperature, compressive strength compared to the higher plane, it was found that improved strength development. In carbonation tests with increasing the replacement ratio of FA carbonation depth was increased. Therefore, continued research on carbonation measures was to be necessary.

  • PDF

Durability Characteristics of High Performance Shotcrete for Permanent Support of Large Size Underground Space (대형 지하공간의 영구지보재로서 고성능 숏크리트의 내구 특성)

  • Won, Jong-Pil;Kim, Hwang-Hee;Jang, Chang-Il;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • This study evaluated the durability of high-performance shotcrete mixed in the proper proportions using alkali-free and cement mineral accelerators as a permanent support that maintains its strength for the long term. Durability tests were performed the chloride permeability, repeated freezing and thawing, accelerated carbonation, and the effects of salt environments. Test results showed that all the shotcrete mixes included silica fume had low permeability. In addition, after 300 freeze/thaw cycles, the shotcrete mix had excellent freeze/thaw resistance more than the 85% relative dynamic modulus of elasticity. The accelerated carbonation test results were no effect of accelerator type but, the depth of carbonation was greater in the shotcrete mix containing silica fume. No damage was seen in a salt environments. Therefore, the high performance shotcrete mix proportions used in this study showed excellent durability.

Strength and Durability of Polymer-Modified Mortars Using Ground Granulated Blast-Furnace Slag (고로슬래그 미분말을 혼입한 폴리머 시멘트 모르타르의 강도 및 내구성)

  • 주명기;김남길;연규석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 2002
  • Effect of the polymer-binder ratio and slag content on the properties of combined wet/dry-cured polymer-modified mortars using granulated blast-furnace slag are examined. Results shows that the flexural and compressive strengths of polymer-modified mortar using the slag tend to increase with increasing slag content, and reaches a maximum at a slag content of 40 %, and is inclined to increase with increasing polymer-binder ratio. Water absorption, carbonation depth and chloride ion penetration depth tend to decrease with increasing polymer-binder ratio and slag content. Accordingly, the incorporation of slag into polymer-modified mortars at a slag content of 40% is recommended for a combined wet/dry curing regardless of the types of polymer.

An Experimental Study on the Durability Evaluation of Polymer Cement Restoration Materials for Deteriorated Reinforced Concrete Structures (성능저하된 철근콘크리트구조물 폴리머시멘트계 보수용 단면복구재의 내구성 평가에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Jae-Hwan;Cho, Bong-Suk;Park, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • The duties of the restorative materials are to bear up against stress and to protect reinforcement corrosion. So the restorative materials are estimated by various kinds of strength, permeability and etc, But, in case of existing performance evaluation of restorative materials, because various deterioration factors are separately acted, the system of performance evaluation is different from that of combined deterioration of real structure and it is difficult to evaluate the exact performance of restorative materials. In this study, to evaluate Performance of restorative materials, we compare their korea standard properties in terms of compressive and bending strength and permeability of water and air with real durability for carbonation, salt damage and actual reinforcement corrosion like ratio of corrosion area. weight reduction and corrosion velocity of steel bar under environment of combined deterioration. The results showed that strength and permeability of restorative materials are similar but their resistance to carbonation, salt damage and actual reinforcement corrosion are very different.

Carbonation Properties of Recycled Cement Mortar made of Cementitious Powder from Concrete Waste (폐콘크리트 미분말을 이용한 재생시멘트 모르터의 중성화 특성)

  • Kim Jin-Yang;Park Cha-Won;Ahn Jae-Cheol;Kang Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.61-64
    • /
    • 2005
  • Recently, there have been many studies about recycling cementitious powder from concrete waste(hereinafter referred to as waste powder), generated after recycle aggregate production. Previous studies showed that when the heating process of waste powder at $700^{\circ}C,\;Ca(OH)_2$ in paste is dehydrated making possible the restoration of hydraulic properties. Recycled cement with hydraulic properties restored is thought to be re-hydrated through the mechanism of hydration, which is almost similar in Portland cement. This clearly suggests that the hydrate of recycled cement is alkali in type. Like in general concrete, if recycled cement is used as a structural material, resistance performance against carbonation or neutralization by $CaCO_3$ in air probably would be most influential to the life of steel-reinforced concrete structure. Thus the purpose of this study is to make an experimental review on chemical properties of recycled cement, manufactured with concrete waste as base material, and investigate the durability of concrete using recycled cement through evaluating the cement s performance of resistance to carbonation in accordance with its accelerating age. Based on its results, further, the study seeks to provide basic information about ways of utilizing recycled cement.

  • PDF

The Examination of Mortar Durability by Microbial Biomineralization (미생물의 생체광물형성작용에 따른 모르타르 내구성 검토)

  • Kim, Sung-Tae;Chun, Woo-Young;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.525-526
    • /
    • 2009
  • On this paper we induce calcite($CaCO_3$) precipitation using microbial biomineralization of the Sporosarcina pasteurii and evaluate required performance evaluation by adjusting it to mortar. As a result carbonation normal mortar test piece(C3S-W) and mortar test piece(C3S-S.p) mixed with Sporosarcina pasteurii, reaction of C3S-S.p was late than C3S-W. Also, in the case of carbonation experiment of C3S-S.p curing in the Urea-CaCl2 aqueous solution(Medium) during 28days and durability of the C3S-W, durability of the mortar test piece(C3S-S.p) mixed with Sporosarcina pasteurii become higher than normal mortar test piece(C3S-W).

  • PDF

An experimental study on the Carbonation and Drying Shrinkage of High Strength Concrete Acording to Kinds and Ratios of Mineral Admixtures (혼화재 종류 및 치환율에 따른 고강도콘크리트의 중성화와 건조수축에 관한 실험적 연구)

  • Kwon, Young-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.127-133
    • /
    • 2003
  • Carbonation and drying shrinkage are very important properties of concrete, that can cause concrete to lower its capacity and spall. But the research on them in high strength concrete is very poor. In this study, to estimate influences of W/B, the kind of admixture, the replacement ratio of admixture, fineness of blast furnace and etc. on drying shrinkage and carbonation, we make experiment with 3 levels(28, 35, 55%) of W/B, 3 kinds(blast-furnace slag, fly-ash, silica-fume) of admixture, 3 levels of the replacement ratio, 3 levels(4000, 6000, 8000cm2/g) of fineness of blast-furnace slag and 2 kinds of curing condition. As the results, compressive strength of concrete was decreased, as W/C was increased and the replacement ratio of admixture was increased. Drying shrinkage was increased, as W/B was higher, the replacement ratio of admixture was increased and fineness of blast-furnace slag was decreased. And carbonation was increased, as W/B ratio was higher, the replacement ratio of admixture was increased.