• Title/Summary/Keyword: 콘크리트 실린더

Search Result 32, Processing Time 0.024 seconds

An Experimental Study on the Pumpability Considering an Effective Ratio of Concrete Delivery Cylinder in Stationary Concrete Pump. (고정식 콘크리트 펌프의 콘크리트 실린더 실효율을 고려한 펌프압송성에 관한 실험적 연구)

  • Kwon, Hae-Won;Bae, Yeoun-Ki;Lee, Jae-Sam;Kim, Seog-Il;Kim, Hyun-Seob;Lee, Jong-Seo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.149-150
    • /
    • 2009
  • The effective ratio of the concrete delivery cylinder has meaning which is important in the performance analysis of stationary concrete pump. But, from experiment or test of most it assumes the effective ratio of the concrete delivery cylinder simply to 90${\sim}$95% level and it is applying. It will follow hereupon and it will be able to grasp the performance of stationary concrete pump by mistake. So we confirm a discharge quantity per time consequently and with, accurately to measure the effective ratio of the concrete delivery cylinder there is a necessity which it will analyze. Experimental resultant existing presumed it apppeared with the fact that it is visible the low-end 70${\sim}$75% level which it sees.

  • PDF

Size Effect of Compressive Strength of Concrete for the Non-standard Cylindrical Specimens (비표준형 실린더 공시체에 대한 콘크리트 압축강도의 크기효과)

  • 김진근;어석홍;이성태
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.105-113
    • /
    • 1997
  • The reduction phenomena of concrete compressive strength with the size of cylinders have been very interested in, but till now the adequate. analysis technique is not fixed. Based on the existing research results. the bigger the member size is, the smaller the strengt.h is. However. the real test ~.csults reveal that the wduction rate becomes blunt and there are considerable differences between size offrct law and real results. The punposc. ofthis paper is to propose tho model equat.ion which covers the compressive strength of' cylinder specimens in case of general hight/dialnetcr ratio in terms of the size effect. he effect of maximum aggregate size on the microcrack zone was also studied, and the model equation was proposed by considering the concept of'the characteristic length. These results will also be used to predict the cornprcssivt. stxngth of various sized concrete cores sampled from existing structures.

Behavior of Circular Concrete Cylinders Confined with Both Steel Spirals and Fiber Composites (나선형 철근 및 섬유에 의하여 동시에 구속된 원형 콘크리트 실린더의 거동)

  • Lee Jung-Yoon;Oh Young-Jun;Jeong Hoon-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.175-184
    • /
    • 2004
  • When the columns of existing RC structures are repaired with FRP composites, the core concrete of the columns is confined by both materials of steel spirals (or steel hoops) and FRP composites because the FRP composites wrap the existing columns which have been already confined with steel spirals or hoops. As the stress-strain curves of steel and fiber are different to each other, the behavior of concrete columns confined with both steel spiral and FRP composites is also different to that of concrete columns confined with only steel spiral or FRP composites. Twenty four RC cylinders were tested in order to observe the behavior of RC cylinders confined with both materials. The observed results of the test showed that the behavior of the test cylinders confined with both materials was quite different to that of cylinders confined with only one material.

Suggestion of a Model for Filling Coefficient of Hydraulic Cylinder in Concrete Pump (콘크리트펌프 유압실린더의 충진율 모델 제안)

  • Park, Chan-Kyu;Jang, Kyong-Pil;Jeong, Jae-Hong;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.195-202
    • /
    • 2016
  • In general, piston pumps are frequently used for concrete pumping. Filling coefficient signifies the ratio volume of a hydraulic cylinder to volume of concrete inside the cylinder. Therefore, it may be considered as a parameter directly affecting the flow rate and efficiency for concrete pumping. However, accurate analyses on this aspect have not yet been performed. In this paper, the data measured from horizontal pipeline pumping tests for 350m and 548m in length was analyzed to identify the relationships of rheological properties of concrete and stroke time with the filling coefficient. In addition, an equation allowing prediction of the filling coefficient from rheological properties of concrete and stroke time has been suggested.

An Experimental Study on the Ductility Capacity of Reinforced High Performance Concrete Beams (고성능 철근콘크리트 보의 연성능력에 관한 실험적 연구)

  • 김용부;고만영;오명석
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1998
  • 본 연구는 고성능 철근콘크리트 보의 연성능력에 관한 실험이다. 실험변수로는인장철근비( )와 하중재하형태(1점가력과 2점가력)가 있다. 콘크리트의 실린더 압축강도가 800-900㎏/㎠, 슬럼프 20∼25㎝ 및 슬럼프 플로우가 60∼70㎝인 고성능 철근콘크리트 보의 휨 실험 결과,고성능 콘크리트는 일반강도 콘크리트보다 취성적인 성질을 나타냈으며, 이러한 성질은 고성능 콘크리트의 연성능력을 감소시켰다. 고성능철근콘크리트의 경우 등가응력블록 변수는 MacGregor블록이나 New Zealand 규준을 사용하는 것이 바람직하다. 또한, 극한 곡률을 구할때는 cu= 0.0042값을 사용하는 것이 타당하다고 사료된다. 고성능 철근콘크리트 보의 경우, 현재 ACI 규준의 철근비에서 허용하는 2 및 4 이상의 연성지수 확보는 각각 '/ 0.30 범위에서 정적하중 상태의 경우 철근비가 - '=0.60 b이하에서 가능하고 휨 부재의 모멘트 재분배를 위한 경우는 철근비를 - '=0.33 b이하로 낮추어야 할 것으로 판단된다.

A stress-strain Model of High-strength concrete confined with Transverse Reinforcement (횡보강철근으로 구속된 고강도 콘크리트의 응력-변형률 구속 모델)

  • Moon, Cho-Hwa;Park, Jong-Wook;Kim, Sang-Woo;Kim, Kil-Hee;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.87-88
    • /
    • 2010
  • The strength and ductile capacity of reinforced concrete column can be improved by confinement using transverse reinforcement. Variety stress-strain models about the reinforced concrete confined by transverse reinforcement has been proposed. In this paper, parameters which effect to the ultimate confinement stress of circular cylinder confined by high strength transverse steel is examined. And the possion's ratio equation is proposed by analysis of strain between concrete and transverse reinforcement.

  • PDF

Confinement Effect of High-Strength Transverse Reinforcement (고강도 횡보강근의 구속 효과)

  • Moon, Cho-Hwa;Kim, Young-Sik;Kim, Do-Jin;Kim, Sang-Woo;Kim, Kil-Hee;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.15-16
    • /
    • 2009
  • The purpose of this research is to examine the confinement effect of high-strength transverse reinforcement for concrete cylinders. In this study the behavior of concrete cylinders reinforced with high-strength steel spirals was investigated.

  • PDF

Size Effect for Flexural Compressive Strength of Concrete (콘크리트의 휨 압축강도의 크기효과)

  • Kim, Jin-Keun;Yi, Seong-Tae;Yang, Eun-Ik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • When the ultimate strength of a concrete flexural member is evaluated, the effect of member size is usually not considered. For various types of loading, however, the strength always decreases with the increment of member size. In this paper the size effect of a flexural compression member is investigated by experiments. For this purpose, a series of C-shaped specimens subjected to axial compressive load and bending moment was tested using three different sizes of specimens with a compressive strength of 528 kg/$cm^2$. According to test results the size effect on flexural compressive strength was apparent, and more distinct than that for uniaxial compressive strength of cylinders. Finally a model equation was derived using regression analyses with experimental data.

Prediction of the Maximum Strain of Circular Concrete Columns Confined with Fiber Composites (섬유에 의하여 구속된 원형 콘크리트 기둥의 최대변형률 예측)

  • Lee, Jung-Yoon;Jeong, Hoon-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.726-736
    • /
    • 2003
  • Concrete columns confined with high-strength fiber composites can enhance its strength as well as maximum strain. In recent years, several equations have been developed to predict the behavior of the concrete columns confined with fiber composites. While the developed equations can predict the compressive strength of the confined columns with reasonable agreement, these equations are not successful in predicting the observed maximum strain of the columns. In this paper, a total of 61 test results is analysed to propose an equation to predict both compressive strength and maximum strain of concrete cylinders. The proposed equation takes into account the effects of confining pressure and cylinder size. Furthermore, in order to verify the proposed stress-strain curve for concrete cylinders, six cylindrical specimens were tested. Comparisons between the observed and calculated stress-strain curves of the tested cylinders showed reasonable agreement.

A Stress-Strain Relationship of Alkali-Activated Slag Concrete (알칼리활성 슬래그 콘크리트의 응력-변형률 관계)

  • Yang, Keun-Hyeok;Song, Jin-Kyu;Lee, Kyong-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.765-772
    • /
    • 2011
  • The present study summarizes a series of compressive tests on concrete cylinder in order to examine the stressstrain relationship of alkali-activated (AA) slag concrete. The compressive strength and unit weight of concrete tested ranged from 8.6 MPa to 42.2 MPa and from $2,186kg/m^3$ to $2,343kg/m^3$, respectively. A mathematical equation representing the complete stress-strain curve was developed based on test results recorded from 34 concrete specimens. The modulus of elasticity, strain at peak stress, slopes of ascending and descending branches of stress-strain curves were generalized as a function of compressive strength and unit weight of concrete. The mean and standard deviation of the coefficient of variance between measured and predicted curves were 6.9% and 2.6%, respectively. This indicates that the stress-strain relationship of AA slag concrete is represented properly with more accuracy in the proposed model than in some other available models for ordinary portland cement (OPC) concrete.