• Title/Summary/Keyword: 콘크리트 블록 제조

Search Result 27, Processing Time 0.019 seconds

A Study on the Technology Trends related to Development of Eco-Friendly Concrete Product (친환경 콘크리트 제품 개발관련 기술동향 조사연구)

  • Kim, Jong-Gurl;Kwon, Byung-Moo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.359-363
    • /
    • 2011
  • 현재 4대강 유역개발과 하천 정비 등 관련된 대규모 토목공사가 진행되고 있다. 친환경적인 수자원 정비를 가능하게 하는 친환경 콘크리트 제품의 개발은 환경오염 방지 및 환경보전에 있어서 필수적이다. 현재 국내에서는 콘크리트에 다양한 자원 순환형 재료를 적용하고 있지만, 적극적 친환경 콘크리트의 연구는 아직 미미한 상태이다. 본 논문에서는 친환경적인 수자원 정비를 가능하게 하는 콘크리트의 필요성과 활용측면에 대해 논해 보고자 한다. 또한 국내외 관련 기술현황을 비교하여 현 콘크리트 제품 개발 산업에 적용방안을 제시하고자 한다.

  • PDF

Manufacturing of Eco-Friend Concrete Block using Recycled Materials (순환자원을 활용한 환경친화형 콘크리트 블록 제조)

  • Lee, Jae-Jin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.389-394
    • /
    • 2017
  • The aim of the research is providing the application method of recycled materials to manufacture the low costed eco-friend block at currently operated concrete block plant. In this research, based on the previous research results on three types of slag cement with illite, desulfurized gypsum, and wasted refractory products, the actual block product was manufactured by the currently operated plant facility and evaluated their properties to suggest the optimal proportions. As an experimental results, in aspect of compressive strength, absorption ratio, freezing resistance, and pH, type III slag incorporating 5% desulfurized gypsum with 1% replaced illite as an aggregate could be suggested as am optimal proportion. In additionally, considering the high cost of the illite, it can be considered as an optimal proportion that type III slag incorporating 5% desulfurized gypsum for binder.

Air Pollutant Removal Rates of Concrete Permeable Blocks Produced with Coated Zeolite Beads (코팅된 제올라이트 비드를 이용한 콘크리트 투수블록의 대기전구물질 제거율 평가)

  • Park, Jun-Seo;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.153-164
    • /
    • 2023
  • The objective of this study is to examine the removal rate of air pollutants, specifically sulfur oxides (SOx) and nitrogen oxides(NOx), using concrete permeable blocks containing zeolite beads coated with materials capable of eliminating these pollutants. Titanium dioxide(TiO2) powder and coconut shell powder were utilized for the removal of SOx and NOx and were applied as coatings on the zeolite beads. Concrete permeable block specimens embedded with the coated zeolite beads were produced using an actual factory production line. Test results demonstrated that the concrete permeable block containing zeolite beads coated with coconut shell powder in the surface layer achieved SOx and NOx removal rates of 12.5% and 99%, respectively, exhibiting superior performance compared to other blocks. Additionally, the flexural strength and slip resistance were 5.3MPa and 65BPN or higher, respectively, satisfying the requirements specified in KS F 4419 and KS F 4561. Conversely, the permeability coefficient exhibited low permeability, with grades 2 and 3 before and after contaminant pollution, according to the standard for 'design, construction, and maintenance of pavement using permeable block'. In conclusion, incorporating zeolite beads coated with coconut shell powder in the surface layer enables simultaneous removal of SOx and NOx, irrespective of ultraviolet rays, while maintaining adequate flexural strength and slip resistance. However, the permeability is significantly reduced, necessitating further improvements.

Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate (순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • The purpose of this study is to identify the possibility of developing the 100% Recycled-resources Absorbent-Pervious Alkali-activated Blocks using both the alkalli-binder and the recycled aggregate. In addition, It established a test method such as Void ratio, compressive strength, coefficient permeability, absorption, and evaporation. As a result, an alkali-activated using recycled aggregate block was able to manufacture an 24 MPa class absorbent-pervious blocks with a liquid type sodium silicate and early high temperature curing. In this case, water-holding capacity, absorption and relative absorption were more effective than the natural aggregates. In conclusion, Absorbent-pervious alkali-activated Block Using recycled aggregate has a surface temperature reducing effect of approximately 10 % compared to ordinary concrete block.

A Study of Block Structures for Improving the Electromagnetic Shielding Properties (전자파 차폐성능 향성을 위한 건축용 블록의 형상 연구)

  • Lim, Gye-Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.175-179
    • /
    • 2012
  • In this paper, we proposed the modified block structures with enhanced electromagnetic shielding properties for mobie communications and ETC frequency bands. As the result of measurement, this block structure with optimized design has the shielding properties of 30 dB, and can be used for electromagnetic safety and EMI.

Application of Oyster Shells as Aggregates for Concrete (콘크리트용 골재로서 굴패각의 활용)

  • 어석홍;황규한;김정규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.540-548
    • /
    • 2002
  • The purpose of this study is to analyze the application of oyster shells (OS) as aggregates for concrete. For this purpose, five reference mixes with W/C ratios of 0.4 ∼0.6 at intervals of 0.05 were used. The replacement proportion of OS was varied with ratios of 0, 10, 30, 50 and 100% by volume of fine or coarse aggregate in the reference mixes. OS was washed and crushed for using as aggregates. New chemical reaction between crushed OS aggregate and cement paste was tested through XRD and SEM analysis. Two strength properties (compressive and flexural) were considered. Strength tests were carried out at the ages of 1, 3, 7, 14 and 28 days. The variations of workability, air content and density, drying shrinkage of the specimens with different proportions of OS were also studied. Finally, the hollow concrete block using OS as a substitute material for fine aggregate was made for testing the application of OS. Experimental results showed that my new chemical reaction did not occur due to mixing OS in concrete. The workability and strengths decreased with increase in proportion of OS. The same trend was observed in density and unit weight, but air content increased due to the inherent pores in OS, which showed a possibility to produce light weight concrete with low strength by using OS as coarse aggregates for concrete. Tests on hollow concrete block showed that the compressive strength and absorption ratio were satisfied with quality requirements when the fine aggregate was substituted with OS up to 50% in volume.

Properties of the Concrete Bricks and Interlocking Blocks Made with the Industrial By-Product (산업부산물로 제조한 콘크리트 벽돌 및 인터록킹 블록의 특성)

  • 최정호;서상교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.179-184
    • /
    • 2000
  • The presens study was aimed to investigate the possibility of use of pozzolanic materials such as blast furnace slag, fly ash, paper sludge ash which are produced from industrial wastes, as construction materials. Experiments were undertaken to investigate the properties of concrete bricks and interlocking blocks made with these industrial by-products. As a result, it was found that the concrete bricks and interlocking blocks made with substitute materials have equivalent strength and quality to those of conventional concrete bricks and interlocking blocks made with only cement. Thus, it could be expected that recycling the industrial wastes can reduce manufacturing costs of the cement as well as prevent environmental pollution by the use of the by-products thrown out as wastes to make secondary products of the concrete.

  • PDF

Properties of Low Carbon Type Hydraulic Cement Binder Using Waste Recycle Powder (무기계 재생원료를 사용한 저탄소형 수경성 시멘트 결합재의 특성)

  • Song, Hun;Shin, Hyeon-Uk;Tae, Sung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • Cement is a basic material for the construction industry and it requires high temperature sintering when manufacturing cement. $CO_2$ emissions from raw materials and fuels are recognized as new environmental problems and efforts are underway to reduce them. Techniques for reducing $CO_2$ in concrete are also recommended to use blended cement such as blast furnace slag or fly ash. In addition, the construction waste generated in the dismantling of concrete structures is recognized as another environmental problem. Thus, various methods are being implemented to increase the recycling rate. The purpose of this study is to utilize the inorganic raw materials generated during the dismantling of the structure as a raw material for the low carbon type cement binder. Such as, waste concrete powder, waste cement block, waste clay brick and waste textile as raw materials for low carbon type cement binder. From the research results, low carbon type cement binder was manufactured from the raw material composition of waste concrete powder, waste cement block, waste clay brick and waste textile.

Development of Non-sintered Construction Materials for Resource Recycling of the Flotation Tailings (부선(浮選) 광미(鑛尾)의 순환자원화(循環資源化)를 위한 비소성(非燒成) 토건재료(土建材料) 개발(開發))

  • Kim, Joo-Ik;Jung, Moon-Young;Park, Jay-Hyun;Lee, Jin-Soo
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • This study was conducted to recycle flotation tailings as non-sintered construction materials considering the economic and eco-friendly treatments. The particle size distribution( median $220\;{\mu}m$) of flotation tailings from Soon-shin mine was confirmed to be larger than that(median $140\;{\mu}m$) of tailings from Sam-kwang mine. Thus we investigated the properties of non-sintered eco-brick producted with the tailings from Sam-kwang mine and non-sintered water permeable block producted with the tailings from Soon-shin mine. Compressive strength of non-sintered water permeable block which was made with less than 25 wt% of tailings from Soon-shin mine was met with products class(over 14.70 MPa) of water permeable concrete(EL 245) from KEITL. Meanwhile, the coefficient of its permeability wasn't met with the products class( over $1.0{\times}10^{-2}\;cm/sec$). The properties of non-sintered eco-brick with less than 40 wt% of tailings from Sam-kwang mine were satisfied with third class in sintered clay brick products standard(KS L 4201). The non-sintered eco-brick as a result of leaching test on heavy metals by KSLT was verified to be environmentally stabile.

Development of Eco-Block for Grass Growth based on Expanded Vermiculite Absorbing Bacteria (박테리아 흡착 팽창질석 기반 친생태 잔디블록의 개발)

  • Yoon, Hyun-Sub;Jung, Seung-Bae;Yang, Keun-Hyeok;Lee, Sang-Seob;Lee, Jae-Yeung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.316-321
    • /
    • 2016
  • This study developed an eco-block for grass growth using the expanded vermiculites that absorb bacteria selected considering for the high pH and dry environments and plant growth. For the developed eco-block, a fundamental properties including compressive strength gain and water absorption and ecology characteristics were tested. The selected bacteria was Bacillus alcalophilus a nd Rhodoblastus acidophilus and had high concentration of $10^9cell/mL$. The expanded vermiculite that was used for shelter of bacteria was added by 7.5% and 10% replacement of the natural aggregates by volume. The developed eco-block achieved the minimum requirements specified in SPS provision and significantly effective in reducing chemical Chemical Oxygen Demand(COD) concentration and enhancing the growth of fish and plant.