• Title/Summary/Keyword: 콘크리트 변형률

Search Result 625, Processing Time 0.031 seconds

A stress-strain Model of High-strength concrete confined with Transverse Reinforcement (횡보강철근으로 구속된 고강도 콘크리트의 응력-변형률 구속 모델)

  • Moon, Cho-Hwa;Park, Jong-Wook;Kim, Sang-Woo;Kim, Kil-Hee;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.87-88
    • /
    • 2010
  • The strength and ductile capacity of reinforced concrete column can be improved by confinement using transverse reinforcement. Variety stress-strain models about the reinforced concrete confined by transverse reinforcement has been proposed. In this paper, parameters which effect to the ultimate confinement stress of circular cylinder confined by high strength transverse steel is examined. And the possion's ratio equation is proposed by analysis of strain between concrete and transverse reinforcement.

  • PDF

Behavior of Reinforced Concrete Members Having Different Steel Arrangements (철근의 배근 위치가 다른 철근콘크리트 부재의 거동 분석)

  • Lee, Jung-Yoon;Kim, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.685-692
    • /
    • 2007
  • When the shear force governs the response of an RC element, as in the case of a low-rise shear wall, the effect of shear on the element's response is thought to be responsible for the 'pinching effect' in the hysteretic loops. However, it was recently shown that this undesirable pinching effect can be eliminated in the hysteretic load-deformation curves of a shear-dominant element if the steel grid orientation is properly aligned in the direction of the applied principal stresses. In this paper, the presence and absence of the pinching mechanism in the hysteretic loops of the shear stress-strain curves of RC elements was explained rationally using a compatibility aided truss model. The analytical results indicate that the pinching effect of the RC elements is strongly related to the direction of the steel arrangement. The area of the energy dissertation does not increase proportionally to the difference between the direction of the principal compressive stress and the direction of the steel arrangement.

Constitutive Model of Laterally Confined High Strength Concrete (횡구속된 고강도 콘크리트의 구성모델)

  • Yun, Sung-Hwan;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.481-488
    • /
    • 2010
  • Since existing constitutive models developed for confined normal strength concrete overestimate ductility when they are applied to confined high strength concrete, these models cannot be directly applied to confined high strength concrete. In an effort to solve this problem, an accurate stress-strain relationship of the hihg strength concrete needs to be formulated by examining the confinement effects due to increase of the concrete strength. In this study, a constitutive model is developed to express the stress-strain relationship of confined high strength concrete by carrying out regression analysis of the main parameters affection strength and ductile behavior of reinforced high strength concrete columns. Twenty-five test specimens were chosen from the reported experimental studies in the literature. The experimental results of stress-strain relationships of show a good agreement with results of the stress-strain relationships of suggested high strength concrete, covering a strength range between 60 and 124 MPa.

An Experimental Study on the Effective Strain of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (FRP로 보강된 철근콘크리트 보의 유효 변형률 예측에 대한 실험적 연구)

  • Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • The shear failure modes of FRP strengthened concrete beams are quite different to those of the beams strengthened with steel stirrups. When the beams are externally wrapped with FRP composites, many beams fail in shear due to concrete crushing before the FRP reaches its rupture strain. In order to predict the shear strength of such beams, the effective strain of the FRP must be blown. This paper presents the results of an experimental study on the performance of reinforced concrete beams externally wrapped with FRP composites and infernally reinforced with steel stirrups. The main parameters of the tests were FRP reinforcement ratio, the type of fiber material (carbon or glass) and configuration (continues sheets or strips). The experimentally observed effective strain of the FRP was compared with the strain calculated using a proposed method.

Characteristics of Stress-strain Relationship of Concrete Confined by Lateral Reinforcement (횡철근에 의해 횡구속된 콘크리트의 응력-변형률 특성)

  • Jeong, Hyeok-Chang;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.67-80
    • /
    • 2009
  • The basic concept of seismic design is to attain the ductility required in a design earthquake. This ductility can be obtained by providing sufficient lateral confinements to the plastic hinge regions of columns. The most cost-effective design might be derived by determining the proper amount of lateral confinement using a stress-strain relationship for confined concrete. Korean bridge design code requires the same amount of lateral confinement regardless of target ductility, but Japanese design code provides the stress-strain relationship of the confined concrete to determine the amount of lateral confinement accordingly. While design based on material characteristics tends to make the design process more involved, it makes it possible to achieve cost-effectiveness, which is also compatible with the concept of performance-based design. In this study, specimens with different numbers of lateral confinements have been tested to investigate the characteristics of the stress-strain relationship. Test results were evaluated, using several empirical equations to quantify the effects.

Properties of Strength and Stress-Strain of Recycled-Plastic Polymer Concrete (폐플라스틱 재활용 폴리머콘크리트의 강도와 응력-변형률 특성)

  • Jo Byung-Wan;Koo Jakap;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.329-334
    • /
    • 2005
  • The use of Polymer Concrete (PC) is growing very rapidly in many structural and construction applications such as box culverts, hazardous waste containers, trench lines, floor drains and the repair and overlay of damaged cement concrete surfaces in pavements, bridges, etc. However, PC has a defect economically because resin which be used for binder is expensive. Therefore the latest research is being progressed to replace existing resin with new resin which can reduce the high cost. Here, Polymer concrete using the recycled PET(polyethylene terephthalate) has some merits such as decrease of environmental destruction, decrease of environmental pollution and development of new construction materials. The variables of this study are amount of resin, curing condition and maximum size of coarse aggregate to find out mechanic properties of this. Stress-strain curve was obtained using MTS equipment by strain control. The results indicated that modulus of elasticity was increased gradually in an ascending branch of curve, as an increase of resin content. Compressive strength was the highest for resin content of $13\%$. And Compressive strength was increased as maximum size of coarse aggregate increases. The strain at maximum stress increases with an increase of resin content and size of coarse aggregate. For the descending branch of stress-strain curve the brittle fracture was decreased when it was cured at the room temperature compared to high temperature.

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

Behavior of Continuously Reinforced Concrete Pavement under Moving Vehicle Loads and Effecct of Steel Ratio (이동차량하중에 대한 연속철근콘크리트포장의 거동 및 철근비의 영향)

  • Kim Seong-Min;Cho Byoung-Hooi;Kwon Soon-Min
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.119-130
    • /
    • 2006
  • The behavior of continuously reinforced concrete pavement (CRCP) and the effect of the steel ratio on the behavior under moving wheel loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered to evaluate the load transfer efficiency (LTE) at transverse cracks and to investigate the strains in CRCP when the system is subjected to moving vehicle loads. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests and the tests were performed at three different times of a day to find the curling effect due to the daily temperature changes in CRCP. The strains in the concrete slab and the bond braker layer of the CRCP system under moving vehicle loads were obtained using the embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the time of testing and the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio.

  • PDF

An Experimental Study on Crack Detection of RC Structure using Measured Strain (측정변형률을 이용한 RC 구조물의 균열검출에 관한 실험적 연구)

  • Park, Ki-Tae;Park, Hung-Seok;Lee, Kyu-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.193-199
    • /
    • 2002
  • Structral crack of RC structure generally occurs when the tension stress by applied load is larger than tension resistance of concrete, and it means deterioration of structure and the decrease of load resistance. Because structural crack of structure can occur critical damage to structure occasionally, the research on crack detection algorithm of RC structure is needed for assurance of structural safety and effective maintenance of structure. In this paper, we executed the laboratory test on measuring strain of RC beam's tension and compression zone, using strain gauge which is widely used on strain measurement of civil structure. By using measured strain, we analyzed strain change, elastic modulus change, and neutral axis change to detect crack of RC beam. As a result, we proposed the simple and effective crack detection algorithm using trends of neutral axis position change.

Low Cycle Fatigue Behavior of Longitudinal Reinforcement (축방향철근의 저주파 피로 거동)

  • Lee, Jae-Hoon;Ko, Seong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.263-271
    • /
    • 2010
  • The purposes of this study is to verify the fracture characteristic of steel which is manufactured in Korea, subjected to cyclic loading. This investigation deals with the low cycle fatigue behavior of longitudinal reinforcement in reinforced concrete bridge substructure (piles and columns of piers). Eighty-one specimens of longitudinal reinforcement were tested under axial strain controlled reversed cyclic tests with strain amplitudes. The selected test variables are ratio of tension strain to compression strain, yield stress of longitudinal reinforcement, ratio of diameter of longitudinal steel to clear length of longitudinal steel, size of longitudinal steel and strain amplitudes. Low cycle fatigue behavior and low-cycle fatigue life are investigated and discussed in this paper.