• Title/Summary/Keyword: 콘크리트 구조물 보수

Search Result 366, Processing Time 0.025 seconds

Crack Control of the Upside of Double Tee Slab and Inversed Tee Beam Joint (더블티 슬래브-역티형 보 접합부 상부의 균열억제를 위한 실험연구)

  • Nam, Sang-Uk;Song, Han-Beom;Yi, Waon-Ho;Yang, Won-Jik;Baik, Young-Soo;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.345-348
    • /
    • 2008
  • Recently, demand is caused that new building environment of value added rising demand on the lines of becoming bigger, manhattanize of structure and becoming high standard of structure in a construction site and influx of advanced foreign nation technique. To satisfy these requirements for alternative, structures applied to the PSC, PC is increasing. Double Tee Slab is possible for long length structure and applied to the method of construction. When assembling Double Tee Slab produced by the factory in the field, becamed carry-out topping concrete in upper, but occurred crack to slab line. There is no structural problem to crack occurred in upper, waterproof in maintenance and repair of structure due to a conservative cause several problems.

  • PDF

Evaluation of Durability on the Repair Materials of Concrete Structures (철근이 부식된 콘크리트구조물용 보수재료의 내구성능 평가)

  • 문한영;이창수;김성수;김홍삼;곽도연
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.857-860
    • /
    • 1998
  • Reinforced concrete structure is deteriorated, as time goes on. So many repair materials are developed for the repair. But repair materials have not been adequately applied so far. Because the datum which evaluated the repair materials are not sufficient. The object of this study is estimation f repair materials that is in general use and establish method of application. To acquire the result, we have made experiments on chemical attack, carbonation and chloride permeability test. The carbonation and chloride permeability are very different. Some repair materials are poorer than portland cement mortar.

  • PDF

Evaluation of Service Life in RC Column under Chloride Attack through Field Investigation: Deterministic and Probabilistic Approaches (염해 실태조사를 통한 철근 콘크리트 교각의 내구수명 평가 - 결정론적 및 확률론적 해석방법)

  • Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • RC (Reinforced Concrete) structures are considered as cost-benefit and durable however performances of structural safety and durability are degraded due to steel corrosion. Service life in RC structure is differently evaluated due to different local environmental conditions even if it is exposed to the same chloride attack. In the paper, 25 concrete cores from field investigation are obtained from 4 RC columns with duration of 3.5~4.5 years exposed to sea water. Through total chloride content measurement, surface chloride contents and apparent diffusion coefficients are evaluated. Service life of the target structure is estimated through deterministic method based on Fick's $2^{nd}$ Law and probabilistic method based on durability failure probability, respectively. Probability method is evaluated to be more conservative and relatively decreased service life is evaluated in tidal zone and splash zone over 40.0 m. Chloride penetration behavior with coring location from sea level and the present limitations of durability design method are investigated in the paper.

원전 구조물의 유지관리 현황과 과제

  • 함영승;송영철;조명석;방기성
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.267-272
    • /
    • 1996
  • 원전 구조물의 대부분은 해안가에 위치하고 있어 염해와 장기적으로 발생하기 쉬운 피로, 중성화등 각종 열화조건에 노출되어 있다. 한편 구조물의 유지관리에 관한 기술은 근본적으로 체계적으로 확립된 절차에 따라 수행되어야 하는 것이 원칙이며 특히 원자력 발전소의 경우에는 결함요인을 사전에 제거함으로써 원자력 안전성에 대한 신뢰도를 높이기 위한 자체기술의 확립이 필요하다. 이러한 필요성에 따라 "원전 안전성 관련 콘크리트 구조물의 열화에 관한 연구"에서는 체계적인 열화현상 검사 절차 및 유지관리기술의 핵심 요소라 할 수 있는 각종 검사 및 이력사항들에 대한 데이터베이스 시스템의 구축, 표준적인 보수.보강 절차를 제시하였으며, 이러한 제반 성과들이 원전 구조물의 유지관리업무에 실용화 될 때 원전의 안전성 향상에 크게 기여하리라 생각된다.여하리라 생각된다.

  • PDF

Development of Dry Process Caisson Method for Maintenance of Submerged Harbor Structure (수중 항만구조물의 유지보수를 위한 건식 케이슨 공법 개발)

  • Lee Joong-Woo;Oh Dong-Hoon;Kwak Seung-Kyu;Kim Sung-Tae
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.447-455
    • /
    • 2006
  • Together with the trend of enhancement in domestic industrial development and economic progress due to import and export, the demand for construction of the roads, bridges, especially port facilities, and several coastal protection and ocean structures is increasing rapidly. MOMAF of Korean Government is driving construction cf 9 new ports and renovation cf the existing fishery ports. Among these structures most of bridge base, wharves, dolphins, quays, and jetties are being newly built cf steel or concrete pile. As the base, supporting bulkheads, and piles are underwater after construction, it is difficult to figure out the status of structures and not enough to get maintenance and strengthen the structures. Every year, moreover, these works suck the government budget due to higher incomplete maintenance expense for protection from corrosions cf structures and increased underwater construction period. For the purpose cf cutting down the expense cf government budget, it is necessary to extend the life cycle of the existing structures. Therefore, we developed a new method for maintenance of submerged structures near the waterline by allowing dry work environment with the floating caisson. The method shows easy to move around the working area and handle. It also showed not only a significant reduction of maintenance expenses and time for anti-corrosion work but also better protection This will be a milestone to reduce the maintenance and construction expenses for the shore and water structures.

Development of Dry Process Caisson Method for Maintenance of Submerged Harbor Structure (수중 항만구조물의 유지보수를 위한 건식 케이슨 공법 개발)

  • Lee Joong-Woo;Oh Dong-Hoon;Kwak Seung-Kyu;Kim Sung-Tae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.163-170
    • /
    • 2006
  • Together with the trend of enhancement in domestic industrial development and economic progress due to import and export, the demand for construction of the roads, bridges, especially port facilities, and several coastal protection and ocean structures is increasing rapidly. MOMAF of Korean Government is driving construction of 9 new ports and renovation of the existing fishery ports. Among these structures most of bridge base, wharves, dolphins, quays, and jetties are being newly built of steel or concrete pile. As the base, supporting bulkheads, and piles are underwater after construction, it is difficult to figure out the status of structures and not enough to get maintenance and strengthen the structures. Every year, moreover, these works suck the government budget due to higher incomplete maintenance expense for protection from corrosions of structures and increased underwater construction period. For the purpose of cutting down the expense of government budget, it is necessary to extend the life cycle of the existing structures. Therefore, we developed a new method for maintenance of submerged structures near the waterline by allowing dry work environment with the floating caisson. The method shows easy to move around the working area and handle. It also showed not only a significant reduction maintenance expenses and time for anti-corrosion work but also better protection. This will be a milestone to reduce the maintenance and construction expenses for the shore and water structures.

  • PDF

An Experimental Study on the Strengtheing Effect of Reinforced Concrete Beams Strengthened by CFRP Rod (탄소섬유막대로 보강한 철근콘크리트 보의 보강효과에 관한 실험적 연구)

  • Park, Sung-Moo;Kim, Jae-Hun;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.85-91
    • /
    • 2004
  • Rehabilitations of reinforced concrete(RC) structures using advanced fibre-reinfored plastic(FRP) composites has become very popular in last few years. Typical method of strengthening strategy using FRP composite is bonding the CFRP plate or sheet on the surface of existing concrete structures. Many researches, however, have shown that bonding FRP plate or sheet on the surface of concrete has tendancy to debond prematurely induced by stress concentrations at the end of the plate. In order for overcoming the premature failure, the filling-up method which places FRP-rod into the existing concrete sawing groove has been developed. Through filling-up test results, aims of this research is to investigate the efficiencies of the filling-up method and is to determine the availabilities of traditional flexural theories that has provided all over the world.

  • PDF

Time Dependent Chloride Transport Evaluation of Concrete Structures Exposed to Marine Environment (해안 환경 하에 있는 콘크리트 구조물의 시간의존적 염화물침투 평가)

  • Song, Ha-Won;Pack, Seung-Woo;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.585-593
    • /
    • 2007
  • This paper presents a model for durability evaluation of concrete structures exposed to marine environment, considering mainly a build-up of surface chloride $(C_s)$ as well as diffusion coefficient (D) and chloride threshold level $(C_{lim})$. In this study, time dependency of $C_s$ and D were extensively studied for more accurate evaluation of service life of concrete structures. An analytical solution to the Fick's second law was presented for prediction of chloride ingress for time varying $C_s$. For the time varying $C_s$, a refined model using a logarithm function for time dependent $C_s$ was proposed by the regression analysis, and averaging integrated values of the D with time over exposed duration were calculated and then used for prediction of the chloride ingress to consider time dependency of D. Durability design was also carried out for railway concrete structures exposed to marine environment to ensure 100 years of service life by using the proposed models along with the standard specification on durability in Korea. The proposed model was verified by the so-called performance-based durability design, which is widely used in Europe. Results show that the standard specification underestimates durability performances of concrete structures exposed to marine environment, so the cover depth design using current durability evaluation in the standard specifications is very much conservative. Therefore, it is found that utilizing proposed models considering time dependent characteristics of $C_s$ and D can evaluate service lift of concrete structures in marine environment more accurately.

Durability and Crack Control of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 균열제어 및 내구성)

  • Yun, Hyun-Do;Yang, Il-Seung;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.57-64
    • /
    • 2006
  • The crack presented in concrete structures causes a structural defect, the durability decrease, and external damages etc. Therefore, it is necessary to improve durability through the effort to control the crack. Fluosilicic acid($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicates prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.0{\sim}2.0%$ of adding ratio of fluosilicate salt based inorganic compound. To evaluate correlation of concrete strength and adding ratio of fluosilicate salt based inorganic compound, the tests were performed about design strength(21, 24, 27 MPa) with 0.5% of adding ratio of fluosilicate salt based inorganic compound. Applications of fluosilicate salt based inorganic compound to reduce cracks resulted from plastic and drying shrinkage, to improve durability are presented in this paper. Durability was evaluated as neutralization, chloride ion penetration depth, freezing thawing resistant tests and weight loss according reinforcement corrosion. It is ascertained that the concrete added fluosilicate salt based inorganic compound showed m ability to reduce the total area and maximum crack width significantly as compared non-added concrete. In addition, the durability of concrete improved because of resistance to crack and watertightness by packing role of fluosilicate salt based inorganic compound obtained and pozzolanic reaction of soluble $SiO_2$ than non-added concrete.

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • It really needs fuzzy decision making of integrity assessment considering about both durability and load carrying capacity for maintenance and administration, such as repairing and reinforcing. This thesis shows efficient models about reinforced concrete structure using CART-ANFIS. It compares and analyzes decision trees parts of expert system, using the theory of fuzzy, and applying damage & diagnosis at reinforced concrete structure and decision trees of integrity assessment using established artificial neural. Decided the theory of reinforcement design for recovery of durability at damaged concrete & the theory of reinforcement design for increasing load carrying capacity keep stability of damage and detection. It is more efficient maintenance and administration at reinforced concrete for using integrity assessment model of this study and can carry out predicting cost of life cycle.