• Title/Summary/Keyword: 콘크리트 교량설계

Search Result 350, Processing Time 0.023 seconds

A Study on Design for Anchorage Zone in PSC Box Girder Bridge Using Strut-Tie Model (스트럿-타이 모델을 이용한 PSC 박스거더교량의 정착부 설계 연구)

  • 이주하;윤영수;이만섭;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.625-630
    • /
    • 2002
  • PSC box girder is widely used in a domestic bridge and overpass, etc., therefore, the design and construction technique for the PSC box girder is developing day by day. Even if it were so, however, the design for anchorage zone in PSC box girder has depended on common sense and empirical results. And it is the current situation that the designer has difficulty due to inadequacy of provisions in the domestic design code and lack of understanding for behavior of anchorage zone. Besides, the design based on Leonhardt's method is being done in general, but the design may be various even for the same structure because of the difference in a way of applying. In this paper, therefore, anchorage zone in PSC box girder bridge is analyzed and designed by using strut-tie model. Adequacy for the application of strut-tie model is verified by comparison with the way used in current design practice, and this study presents that strut-tie model can be a rational and an economical design than current design methods.

  • PDF

A Case Study on Continuous Prestressed Concrete Composite Girder with Cross-beam Anchorage System (가로보를 정착구조로 하는 연속화 PSC 합성거더 시공사례)

  • Park, Hyun-Myo;Huh, Young;Kim, Yun-Hwan;Kim, Seok-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.451-452
    • /
    • 2010
  • Prestressed concrete I girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. But in Korea, the PSC bridge has not been utilized for long span because of high girder height in its standard design. Thus, the results confirm that it is possible to applicate the continuous PSC girder with end cross beam anchorage system using multi-stage prestressing technique.

  • PDF

Design & Construction of PSC Box-Girder Bridge with Central Suspension by Extradosed Cables and Constant Girder Depth (중앙일면식 케이블과 등형고를 갖는 Extradosed PSC 교량의 설계 및 시공)

  • 조의경;김성일;박종화;이수열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.618-625
    • /
    • 2003
  • The recent development of PSC girder bridges are mostly dedicated for optimization of self-weight, simplification of girder section for easy construction and minimization of maintenance efforts. Moreover some of those bridges are required as a landmark facility which raises the image of locality and harmony with surroundings. An extradosed bridge is one of the best alternates which not only covers the longer span than PSC box girder and also performs the role of landmark facility with much cheaper cost than cable stayed bridge. Hyundai is carrying out the construction of unique style extradosed bridge which have central suspension system and uniform girder depth named Keong-An grand bridge on the Sungnam-Janghowon Express highway. In this paper, major process of design and construction features of Keong-An bridge is presented.

  • PDF

축대칭 PC탱크의 유한요소 해석

  • 이이환;김동언
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.981-986
    • /
    • 1995
  • 이 논문의 목적은 축대칭 프리스트레스트 콘크리트 탱크의 시간의존성 유한요소해석법을 제안하는 것이다. 오늘날 PC구조물은 교량, 포장판, 해상구조물, 원자로 격납구조물, 대규모 액체저장용 탱크 등 여러 형태의 구조물에서 그 사용 예를 쉽게 찾아볼 수 있다. 특히 본 논문에서 고려하고자 하는 압력창기나 액체 저장용 탱크의 경우 유체압력 등의 내부압력에 의해 발생하는 균열은 프리 스트레스를 도입함으로써 매우 효과적으로 제어할 수 있기 때문에 상당히 유리한 구조형식이 된다. 그러니 이러한 구조물의 해석과 설계에 있어서 균열의 예측과 더불어 콘크리트의 크리이프, 건조수축 및 PC강재의 리락세이션 등과 같은 시간 의존성 변형으로 인한 프리스트래스의 손실, 여러 단계의 긴장력을 도입함으로써 발생하는 순간변형인 탄성단축 및 이로 인한 긴장력 감소 등을 정확히 계산하는 일은 매우 복잡하고 어려운 일이다. 본 논문에서는 크리이프, 건조수축 및 리락세이션 등과 같은 시간의존성 변형과 순차적으로 다단계의 프리스트레스 도입으로 인한 순간변형 및 탄성단축의 영향을 고려한 축대칭 PC 탱크 구조물의 시간에 따른 거동 및 긴장력의 변화를 유한요소법을 적용하여 해석할 수 있는 해법체계를 정리하고 이를 전산 프로그램화하여, 축대칭 PC탱크 구조물의 시간 의존성 거동에 대한 보다 정밀한 해석을 수행하였다.

  • PDF

Design and Construction of Hybrid Bridge with Corrugated Steel Web by Incremental Launching Method (압출공법에 의한 복부 파형강판 복합교량의 설계 및 시공)

  • Kim Kwang Soo;Jung Kwang Hoe;Sim Chung Wook;Han Jung Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.411-414
    • /
    • 2005
  • This paper presents how to design and construct the Il-sun bridge, the first PSC box girder bridge with Corrugated Steel Web(CSW) in Korea, including 3D analysis results according to construction steps. Also, the 3D analysis for the beams with CSW was performed for the purpose of verifying the role of the flange plate. As the results of this analysis, it is founded that the flange plate plays a role to resist the flexural strength in the nonlinear region. In the near future, we are plan to carry out the load test for these beams with CSW.

  • PDF

Design Vessel Selection of Maritime Bridges using Collision Risk Allocation Model (충돌위험분배모델을 이용한 해상교량의 설계선박 선정)

  • Lee, Seong-Lo;Lee, Byung-Hwa;Bae, Yong-Gwi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.351-354
    • /
    • 2005
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of the maritime bridge. Method II which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. The AF allocation by weights seems to be more reasonable than the pylon concentration allocation method because this AF allocation takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified.

  • PDF

Design Strength of Bridges against Ship Collision according to Vessel Traffic (선박통행량에 따른 교량의 선박충돌 설계강도)

  • Lee Seong-Lo;Lee Byung-Hwa;Kang Sung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.663-666
    • /
    • 2004
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. AF is computed for each bridge component and vessel classification. The summation of AFs computed over all of the vessel classification intervals for a specific component should equal the annual frequency of collapse of the component. The designer should use judgment in developing a distribution of the vessel frequency data based on discrete groupings or categories of vessel size by DWT. In the present study the effect of vessel classification on the annual frequency of collapse in the ship collision risk assessment is investigated by illustrative numerical examples based on the vessel frequency data of the domestic harbor. The DWT interval for larger vessels has more effect on the ship collision risk. Therefore the expert judgement in determining the larger DWT interval is required because the design impact lateral resistances of bridge components depend on the ship collision risk.

  • PDF

Design and Construction Specifications of Main and Crescent Bridges in Palm Jebel Ali (팜제벨알리교량 설계 및 시공 기준)

  • Kang, Dong-Ok;Kim, Yeong-Seon;Lee, Hyung-Jin;Shin, Hyun-Yang;Park, Dong-Kyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.47-50
    • /
    • 2008
  • Design of main and crescent bridges in Palm Jebel Ali, Dubai, is based on AASHTO LRFD. Additional standards and reports are also considered to reflect regional conditions. In addition, JAFZA's Bridge Design Guideline is reviewed for their approval. This article focuses on modified design requirements such as load and durability fit to the middle east area. Technical specifications are mentioned briefly.

Temperature-Induced Stresses and Deformation in Composite Box Girder Bridges (합성 박스형 교량의 온도에 의한 응력 및 변형)

  • Chang, Sung Pil;Im, Chang Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.659-672
    • /
    • 1997
  • Thermal response induced from nonlinear temperature distribution in composite box gilder bridges depends on several variables(environmental conditions, physical and material properties, location and orientation of bridge, and cross-section geometry). In this paper, parametric study are conducted in order to find the effects of variations of seasons, location and orientation of bridge, sectional geometry and some material properties on the axial deformation, curvature and stresses in composite box girder bridge. A two-dimensional transient finite element model to conduct this parametric studies is briefly presented. Firstly, the effects of the parameters on the diurnal variation of curvature are considered, and for the time of maximum curvature, on the distribution of temperature and stresses of composite box girder sectional are considered. Finally, some considerations about the influence of the parameters on the daily maximum values of axial deformation, curvature and stresses are carried out. The influence of thermal effect on structures is important as much as the influence of live or dead load in some cases. In the design of steel composite bridges, the thermal stresses calculated on the supposition that the temperature difference between the concrete slab and steel girder is $10^{\circ}C$ and the temperature distributions are uniform in concrete slab and steel girder can be underestimated.

  • PDF

New Approaches for Calibrating Material Factors of Reinforced Concrete Members in Korean Highway Bridge Design Code (Limit State Design) and Reliability Analysis (도로교설계기준(한계상태설계법)의 콘크리트부재 설계를 위한 재료계수 결정법 및 신뢰도 분석)

  • Lee, Hae Sung;Song, Sang Won;Kim, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • This paper brings up fallacy of material factors specified for the design of concrete members in the current Korean limit state design code for highway bridges, and proposes new material factors based on a robust optimization scheme to overcome the fallacy. It is shown that the current load factors in the code and the proposed material factors lead to a much higher reliability index than the target index. The load factors are adjusted to yield the target reliability index using the inverse reliability analysis. A reliability-based approach following the basic concept of Eurocode is formulated to determine material factors as well as load factors. The load-material factors obtained by the proposed reliability-based approach yield a lower reliability level than the target index. Drawbacks of the basic concept of Eurocode are discussed. It is pointed out that differences in the uncertainties between materials and members may cause the lower reliability index of concrete member than the target.