• Title/Summary/Keyword: 콘크리트 공동

Search Result 229, Processing Time 0.029 seconds

Case Study on the Tunnel Collapse at the Shallow Depth (NATM터널 저토피 구간에서의 막장붕락 사례연구)

  • Baek Ki-Hyun;Roh Jong-Ryun;Kim Yong-Il;Cho Sang-Kook;Hwang Nag-Youn
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.102-110
    • /
    • 2005
  • ○ ○ tunnel that is located at Iksan - Jangsu freeway ○ ○, has collapsed during construction at the valley with shallow depth. Although, the site investigations, such as TSP, drilling exploration and so of indicated the presence of discontinuities in this section. The RMR was upgraded and the construction were carried out because that not only actual rock qualities were relatively good during construction but also the tunnel foe was stabilized. However, the tunnel was collapsed at the same time blasting of full face, and surface and underground water was infiltrated due to the settlement of the upper part of the tunnel face. To restore the collapsed section, 3-d tunnel stability analysis was performed and suitable reinforcement methods were chosen. The cavity of the upper tunnel face was stabilized by means of UAM and ALC injection. And the settlement was restored using L.W grouting method.

Development of Oil Leakage Stability Evaluation for Composite Aterproofing Methods using Asphalt Mastic and Modified Asphalt Sheet in Concrete Structure (콘크리트 구조물에 사용되는 개량아스팔트 시트와 아스팔트 매스틱을 복합화한 방수공법의 누유안정성 평가방법 개발)

  • Park, Jin-Sang;Kim, Dong-Bum;Park, Wan-Goo;Kim, Byoung-Il;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • In this study, a revised oil leakage evaluation method for assessing oil leakage stability of asphalt mastics used in upper slabs of below-grade residential parking lots was developed and presented. In order to verify the reliability and reproducibility of leakage results, the parameters the revised evaluation was carried out for three products with actual leakage history, and it was confirmed the leaks could be reproduced whereas the existing methods could not. To quantitatively verify the reproducibility, the filler content of the leaked samples was derived and the maximum filler content was 64% lower than that of the normal sample. The same results was found with the samples from the actual leakage site, thus verifying the reliability of the revised evaluation method.

Characteristics of Subsidence of a Road During the New Tubular Roof Construction Around a Shallow Tunnel (저심도 터널주변의 NTR보강 중 발생한 도로면 침하의 특성)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.620-634
    • /
    • 2018
  • The NTR(New Tubular Roof) method was used to secure the stability of the tunnel and minimize the subsidence of the road. The tunnel was constructed at about 7.5 meters deep below the highway. with a width of about 21 meters. Following the NTR method, 13 steel pipes with a diameter of 2.3 meters were digged and pushed in longitudinally along the tunnel profile and cut out sides of pipes to connect to adjacent pipes, then filled the inside of pipes and the connected space between pipes with concrete to complete the lining of the tunnel to be excavated. As the steel pipes were digged in sequentially, the area of relaxation was connected to each other and behaves like a gradually widening tunnel. When the steel pipes were digged in to the widest points of the tunnel, the settlement rate of the road surface was increasing to the maximum as 2.2 mm and the total settlement until the lining construction was approximately 7.7 mm. After that, by excavating a tunnel inside the pre-installed lining, an additional settlement of about 4.3 mm was occurred, resulting in the total settlement of about 11.8 mm after completing of tunnel construction.

Microseismic Monitoring for KAERI Underground Research Tunnel (KURT 미소진동 모니터링)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 2009
  • The microseismic monitoring system with wide range of frequency has been operating in real time and it is remotely monitored at indoor and on-site for one year. This system was constructed and established in order to secure the safe and effective operation of the KAERI Underground Research Tunnel(KURT). For one year monitoring work, total 14 events were recorded in the vicinity of the KURT, and the majority of events are regarded as ultramicroseismic earthquake and artificial impacts around the tunnel. The major event is the magnitude 3.4 earthquake which was centered around Gongju city, Chungnam Province. It means that there is no significant evidence of high frequency microseismic event, which is associated with fracture initiation and/or propagation in the rock mass and shotcrete. Three components sensor was applied in order to analyze and define the direction of vibration as well as an epicenter of microseismic origin, and also properly designed and installed in a small borehole. This monitoring system is able to predict the location and timing of fracturing of rock mass and rock fall around an undreground openings as well as analysis on safety of various kinds of engineering structures such as nuclear facilities and other structures.

Case Study of the Stability of a Large Cut-Slope at a Tunnel Portal (터널 입구부 대절토 사면 안정성 사례 연구)

  • Park, Dong Soon;Bae, Jong-Soem
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.115-129
    • /
    • 2015
  • The cut-slope of a large-sectional tunnel portal is recognized as a potential area of weakness due to unstable stress distribution and possible permanent displacement. This paper presents a case study of a slope failure and remediation for a large-scale cut-slope at a tunnel portal. Extensive rock-slope brittle failure occurred along discontinuities in the rock mass after 46 mm of rainfall, which caused instability of the upper part of the cut-slope. Based on a geological survey and face mapping, the reason for failure is believed to be the presence of thin clay fill in discontinuities in the weathered rock mass and consequent saturationinduced joint weakening. The granite-gneiss rock mass has a high content of alkali-feldspar, indicating a vulnerability to weathering. Immediately before the slope failure, a sharp increase in displacement rate was indicated by settlement-time histories, and this observation can contribute to the safety management criteria for slope stability. In this case study, emergency remediation was performed to prevent further hazard and to facilitate reconstruction, and counterweight fill and concrete filling of voids were successfully applied. For ultimate remediation, the grid anchor-blocks were used for slope stabilization, and additional rock bolts and grouting were applied inside the tunnel. Limit-equilibrium slope stability analysis and analyses of strereographic projections confirmed the instability of the original slope and the effectiveness of reinforcing methods. After the application of reinforcing measures, instrumental monitoring indicated that the slope and the tunnel remained stable. This case study is expected to serve as a valuable reference for similar engineering cases of large-sectional slope stability.

A Study on Measurement of Penetration Depth of Steel Pipe Using the Impact-Echo Method (충격탄성파법에 의한 강관구조물 근입깊이 측정에 관한 연구)

  • Lee, Sang Hun;Kumagai, Takayuki;Endo, Takao;Han, Youn Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.89-89
    • /
    • 2011
  • 도로의 가드레일 지주 근입깊이의 부족에 의한 자동차의 전락사고 이 후, 일본의 국토교통성 등의 관계자들이 그 대책 세우기에 부심해 왔으나, 기설 지주의 근입깊이를 측정할 수 있는 방법은 아직까지 알려져 있지 않으며, 현재로서는 작업의 전 과정을 비디오로 촬영하여 그 기록을 남기도록 되어있다. 그러나 그것은 상당히 비효율적인 작업으로 엄밀한 감시기능을 다하지 못하고 있으며, 감독자와 시공자의 양자로부터 계측 도구의 개발이 절실히 요구되고 있다. 일부의 초음파 측정기 업자가 가드레일 지주의 근입깊이를 측정할 수 있다고 주장하고 있으나, 시장에는 아직 나타나지 않고 있으며, 그 측정시스템의 측정여부와 성능의 검증이 이루어지지 않고 있는 상황이다. 지금까지 충격탄성파법 또는 초음파법을 이용하여, 매설된 가드레일 지주의 근입깊이를 측정한 성공사례가 정식으로 보고된 바는 없으며, 같은 강관주인 눈사태 방지책의 지주 파이프에 대한 근입깊이의 측정은 본 연구그룹의 의해 행하여진 바가 있다. 검사봉이나 해머 등으로 대상물을 두드려서 탄성파를 발생시키고, 그것을 가속도계 또는 속도계의 진동센서로 감지하여 그 파형을 분석함으로써 대상물의 치수 등을 측정하는 충격탄성파법은, 특히 콘크리트를 대상으로 공동 및 매설물 등의 탐사, 균열깊이의 측정 등에 폭 넓게 사용되고 있다. 하지만 이 측정방법을 가드레일의 지주의 근입깊이 측정에 적용할 경우, 일반적으로 행하여지는 방법, 즉 진동센서를 대상물의 상단부(캡)에 설치하는 방법으로는 접합부에 의한 탄성파의 손실과 캡의 휨 진동에 의한 노이즈 등을 해결하기가 곤란해진다. 또한 지반의 존재로 인한 진동 모드의 변화와 진동에너지의 감소 등의 문제점을 해결하지 않으면 안 된다. 본 연구는 충격탄성파법을 이용하여 지반에 설치된 눈사태 방지책이나 가드레일의 지주와 같은 강관 구조물의 근입깊이를 측정하고자 하는 연구이다. 이를 위해 진동센서를 캡이 아닌 측면부에 취부장치를 이용하여 설치함으로써 길이방향의 탄성파를 측정할 수 있도록 하고, 실제 구조물에 대해 측정을 실시하여 그 측정시스템의 성능과 유용성을 검토하고자 한다. 또한 다양한 길이의 실험용 강관 파이프를 매설하고 측정실험을 실시하여 측정시스템의 적용성에 대해서도 검토하였다. 본 연구를 통하여, 수신센서를 파이프의 측면에 선접촉하게 함으로서 종파를 감지하여 근입깊이를 포함한 파이프의 전 길이를 측정하는 본 측정시스템은 매설된 강관 구조물의 길이 측정에 기본적으로 적용 가능함을 확인할 수 있었다. 특히 오거 굴착으로 시공된 경우에는 높은 정도의 측정성능을 보여주었다. 또한 항타관입 파이프에 대해서는 지반의 영향을 고려함으로써 길이의 측정이 가능하다는 것을 확인할 수 있었다. 즉, 오거 굴착 또는 항타 관입 등 시공방법에 따라 측정결과에 대한 지반의 영향 정도가 달라지며 파형 분석 및 길이 산정시 그 영향을 고려하여야 함을 확인하였다.

  • PDF

Study on the Applicability of High Frequency Seismic Reflection Method to the Inspection of Tunnel Lining Structures - Physical Modeling Approach - (터널 지보구조 진단을 위한 고주파수 탄성파 반사법의 응용성 연구 - 모형 실험을 중심으로 -)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Shin, Yong-Suk;Hyun, Hye-Ja;Jung, Hyun-Key
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • In recent years two reflection methods, i.e. GPR and seismic Impact-Echo, are usually performed to obtain the information about tunnel lining structures composed of concrete lining, shotcrete, water barrier, and voids at the back of lining. However, they do not lead to a desirable resolution sufficient for the inspection of tunnel safety, due to many problems of interest including primarily (1) inner thin layers of lining structure itself in comparison with the wavelength of source wavelets, (2) dominant unwanted surface wave arrivals, (3) inadequate measuring strategy. In this sense, seismic physical modeling is a useful tool, with the use of the full information about the known physical model, to handle such problems, especially to study problems of wave propagation in such fine structures that are not amenable to theory and field works as well. Thus, this paper deals with various results of seismic physical modeling to enable to show a possibility of detecting the inner layer boundaries of tunnel lining structures. To this end, a physical model analogous to a lining structure was built up, measured and processed in the same way as performed in regular reflection surveys. The evaluated seismic section gives a clear picture of the lining structure, that will open up more consistent direction of research into the development of an efficient measuring and processing technology.

  • PDF

Guidedwave-induced rockbolt integrity using Fourier and wavelet transforms (유도파에 대한 푸리에 및 웨이브렛 변환을 이용한 록볼트의 건전도 평가)

  • Lee, In-Mo;Kim, Hyun-Jin;Han, Shin-In;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 2007
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these types of structures. The purpose of this study is the evaluation of rock bolt integrity using Fourier and wavelet transforms of the guided ultrasonic waves. After five rock bolt specimens with various defect ratios are embedded into a large scale concrete block, guided waves are generated by a PZT (lead zirconate titanate) element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the frequency domain using the Fourier transform, and in the time-frequency domain using the wavelet transform based on a Gabor wavelet. The spectrum obtained from the Fourier transform shows that a portion of high frequency contents increases with increase in the defect ratio. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with the defect ratio. This study shows that the spectrum ratio and the energy velocity may be indicators fur the evaluation of rock bolt integrity.

  • PDF

Application of the SASW Method to the Evaluation of Grouting Performance for a Soft Ground of a Tunnel (터널 원지반의 그라우팅 보강 평가를 위한 SASW 기법의 적용)

  • 조미라;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.273-283
    • /
    • 2003
  • Fissured rock and soft ground always suggest, problems in the construction of the underground space. The stress release of the weak underground material by opening the underground space with a soft ground, fissures and joints can lead to the failure of the opening. Grouting of the weak rock and the soft ground, which is a process of injecting some bonding agents into the soft ground, is one of the measures to reinforce the soft ground and to prohibit the failure of the underground construction due to the stress release. The proper installation of the grouting is essential to ensuring the safety of the tunneling operation, so that the evaluation of the grouting performance is very significant. The general procedure of evaluating the grouting is coring the grouted section and measuring the compression strength of the core. However, sometimes when the grouted section is at the crown of the tunnel and the grouting is installed at a wide section, the coring is not good enough. This study is oriented to propose a new and a non-destructive procedure of evaluating the grouting performance. The proposed method is based on the wave propagation of elastic waves, and evaluates the shear stiffness of the ground and investigates the anomalies such as voids and cracks. The SASW ( Spectral-Analysis-of-Surface-Waves) method is one of the candidate s to make the inspection of the pouting performance, and is adopted in this study. The practical grouting activity was monitored by SASW method, and the proposed method was applied to the inspection of the grouting performance to check the verification of the proposed method.

Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage (충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • A packed bed thermal energy storage (TES) consisting of solid storage medium of rock or concrete through which the heat transfer fluid is circulated is considered as an attractive alternative for high temperature sensible heat storage, because of the economical viability and chemical stability of storage medium and the simplicity of operation. This study introduces the technologies of packed bed thermal energy storage, and presents a numerical model to analyze the thermal energy balance and the performance efficiency of the storage system. In this model, one dimensional transient heat transfer problem in the storage tank is solved using finite difference method, and temperature distribution in a storage tank and thermal energy loss from the tank wall can be calculated during the repeated thermal charging and discharging modes. In this study, a high temperature thermal energy storage connected with AA-CAES (advanced adiabatic compressed air energy storage) was modeled and analyzed for the temperature and the energy balance in the storage tank. Rock cavern type TES and above-ground type TES were both simulated and their results were compared in terms of the discharging efficiency and heat loss ratio.