• Title/Summary/Keyword: 콘크리트확대기초

Search Result 37, Processing Time 0.031 seconds

An Experimental Study on Reinforcement Method for Reuse of Onshore Wind Turbine Spread Footing Foundations (육상풍력터빈 확대기초의 재사용을 위한 보강방법에 관한 실험적 연구)

  • Song, Sung Hoon;Jeong, Youn Ju;Park, Min Su;Kim, Jeong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In order to reuse existing onshore turbine foundations, it is important to redesign and reinforce the existing foundations according to the upgraded tower diameter and turbine load. In the present study, a slab extension reinforcement method and structure details of an anchorage part were examined in consideration of the reuse of spread footings, which are the most widely used foundation type in onshore wind turbine foundations. Experiments were conducted to evaluate the load resistance performance of a reinforced spread footing according to structure details of an anchorage part. The results showed that (1) the strength of an anchorage part could be increased by more than 30 % by adding reinforcement bars in the anchorage part, (2) pile-sleeves attached to an anchor ring contributed to an increase in rotational stiffness by preventing shear slip behavior between the anchor ring and the concrete, and (3) slab connectors contributed to an increase in the strength and deformation capacity by preventing the separation of new and old concrete slabs.

Anchorage Strength of High Strength Headed Bar Embedded Vertically on SFRC Members (SFRC 부재에 수직 배근된 고강도 확대머리철근의 정착강도)

  • Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.148-156
    • /
    • 2020
  • The paper is a summary of the results of the basic pullout test which is conducted to evaluate the anchorage capacity of high strength headed bars that is mechanical anchored vertically on steel fiber reinforced concrete members. The main experimental parameters are volume fraction of steel fiber, concrete strength, anchorage length, yield strength of headed bars, and shear reinforcement bar. Both sides of covering depth of the specimen are planned to double the diameter of the headed bars. The hinged point is placed at the position of each 1.5𝑙dt and 0.7𝑙dt around the headed bars, and the headed bars are drawn directly. As a result of pullout test experiment, concrete fracture and steel tensile rupture appear by experimental parameters. The compressive strength of concrete is 2.7~5.4% higher than that of steel fiber with the same parameters, while the pullout strength is 20.9~63.1% higher than that of steel fiber without the same parameters, which is evaluated to contribute greatly to the improvement of the anchorage capacity. The reinforcements of shear reinforcements parallel to the headed bars increased 1.7~7.7% pullout strength for steel fiber reinforced concrete, but the effect on the improvement of the anchorage capacity was not significant considering the increase in concrete strength. As with the details of this experiment, it is believed that the design formula for the anchorage length of KCI2017and KCI2012 are suitable for the mechanical development design of SD600 head bar that is perpendicular to the steel fiber reinforced concrete members.

The Study on Local Composite Behavior of Connection Member between Steel Pipe Pile and Concrete Footing (강관 말뚝 기초 두부 연결부의 합성거동에 대한 연구)

  • You, Sung-Kun;Park, Jong-Myen;Park, Dae-Yong;Kim, Young-Ho;Kang, Won-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.288-296
    • /
    • 2003
  • Generally, application of steel pipe pile as deep foundation member needs special requirement for the connection method between steel pipe pile and concrete footing. Even though two types of connection method are suggested in the related specification, type B-method is provident. To investigate real structural behavior of type B connection, several load tests are done with carefully designed experimental system. The purpose of this experiment is mainly focused on the understanding of actual behavior which can be predicted by design theory. At this research stage, vertical and lateral loading test are done for three types of specimen to review stress concentration, formation and behavior of imaginary RC column in the footing and effect of non-slip device installed in the steel pipe pile. The load resistance mechanism in these specific connection method is predicted based on both experimental results. The three-dimensional finite element modeling is also done for the purpose of comparison between numerical and experimental result. With all the results gained from experiment the structural behavior of imaginary RC column in the design concept is confirmed. The role of non-slip device is very important and it affects the resistance capacity with help of composite action of concrete and steel pipe pile.

An Experimental Study on Properties of Color Concrete with Types and Addition Ratio of Pigment (콘크리트용 안료의 종류 및 첨가율에 따른 칼라콘크리트 기초물성에 관한 실험적 연구)

  • Park, Jong-Ho;Kim, Jung-Bin;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.673-676
    • /
    • 2008
  • Recent trends show an increased usage of 'colored concrete', a inorganic pigmented concrete mix, especially in small to large scale buildings. However, due to lack of regulations, current usage of colored concrete indicates a lack of consideration for safety factors and aesthetic aspects. Sometimes color pigmentation used in paints are inappropriately used in concrete, and in many cases the addition of coloring material is done without proper research into how structural characteristics of resulting concrete may have been affected. To resolve these issues, some construction sites apply ASTM or ACI regulations. However, such regulations incorporate elements that cannot be applied in Korea, which makes their domestic application impractical. In this paper, the primary aim is to determine to what extent the basic material characteristics of concrete is affected by the variety and quantity of different color pigments, and in so doing establish a foundation for future reference in case of construction projects involving the use of colored concrete.

  • PDF

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴 특성)

  • Lee, Yun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2002
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By taking various strengths and ages, load-crack mouth opening displacement curves were obtained, and the results were analyzed by linear elastic fracture mechanics and the finite element method. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete ages from 1 day to 28 days. By numerical analysis four parameters of bilinear softening curve from 1 day to 28 days were obtained. The obtained fracture parameters and bilinear softening curves at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

The Experimental Study on Load Transfer Mechanisms in Non-slip Device of Steel Pipe Pile Cap (강관말뚝 머리결합부의 미끄럼 방지턱에 관한 하중전달 메카니즘 연구)

  • Kim, Young-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.221-229
    • /
    • 2004
  • In Recent experimental research results of connection method between steel pipe pile and concrete footing are provided based on various experimental observations. It gives a shedding light toward developing better connection method for steel pipe pile at the field application. In this study, the newly developed method is tested for compressive, pull put and combination load including moment with carefully designed monitoring system. The measured data show that new method have at least equivalent or better load resistant capacities compared with those of specified method in Korea Road Design Specification. It is also tried to define and investigate the load transfer mechanism for new method.

A Fundamental Study on the Optimal Mix Proportion for Antiwashout Underwater Concrete (수중 비분리 콘크리트의 최적 배합비에 관한 기초적 연구)

  • 진치섭;김희성;한태영
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.224-232
    • /
    • 1995
  • Recently, in other.view of underwater concrete construction, special admixture agent of concrete has been developed for antiwashout of concrete under water with easy carrying out method in some foreign nations. They had successful cases in experiment and construction and it trend to use in many cases with many scales. However, in domestic, there was rare record in carrying out. In this paper, reference for successful results of experiment and construction about antiwashout underwater concrete, as variable add of special admixture agent and other agents. We have carried out property tests of fresh and hardened concrete, certified the properties and made the antiwashout underwater concrete have enough strength to endure with ea.sy construction. And we have decided the optimal mix proportion for antiwashout underwater concrete under standard state.

Realistic Reliability Analysis of Reinforced Concrete Structures (철근콘크리트 구조물의 합리적인 신뢰성해석연구)

  • Oh, Byung Hwan;Koh, Chae Koon;Baik, Shin Won;Lee, Hyung Joon;Han, Seung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.121-133
    • /
    • 1993
  • Presented is a study on the establishment of a method of advanced reliability analysis for the realistic analysis and design of reinforced concrete(RC) structures. Considerable variabilities exist in concrete structures due to random nature of concrete materials and member dimensions. The present study analyzes first the uncertainties in concrete, reinforcements and member dimensions and then a method is proposed to determine the probability uncertainties of basic variables. The limit state equations are also proposed for the RC members with axial compression and bending and RC footings. The advanced invariant second-moment method is applied to analyze those structures. The present study provides an important base for realistic reliability analysis of RC structures.

  • PDF

An Experimental Study to Determine the Mechanical Properties of Recycled Aggregate Separated from Demolished Concrete and Recycled Aggregate Concrete (폐 콘크리트에서 분리된 재생골재와 재생콘크리트의 공학적 특성규명을 위한 실험적 연구)

  • 전쌍순;이효민;황진연;진치섭;박현재
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.345-358
    • /
    • 2003
  • Recently, the reuse of coarse aggregate derived from demolished concrete was introduced into practice with two environmental aspects: protection of natural sources of aggregate and recycling of construction waste. However, recycled aggregate has been used for the very limited application such as subbase material for pavement and constructional filling material because it was considered as low quality constructional materials. In the present study, in order to examine the possibility that recycled aggregate can be used for concrete mixing, we conducted various experimental tests to identify mineralogical, chemical and mechanical properties of recycled aggregate and to determine the workability and mechanical properties of recycled aggregate concrete (RAC). The cement paste and mortar contained in recycled aggregate significantly affect the basic mechanical properties of aggregate and the workability and mechanical properties of RAC. However, RCA mixed with the proper replacement ratio of recycled aggregate shows the comparable compressive strength and freeze and thaw resistance to those of normal concrete. Therefore, it is considered that recycled aggregate can be widely used for concrete if the cement paste and mortar can be efficiently removed from recycled aggregate and/or if the effective replacement ratios of recycled aggregate are applied for mixing concrete.

A Study on the Quality Properties of Exposed High Fluidity Concrete using Fly Ash and Limestone Powder (플라이애시 및 석회석 미분말을 사용한 고유동 노출 콘크리트의 품질특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Ji-Hoon;Kim, Kyung-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • Recently, the interest is increasing about the exposed concrete, accordingly, exposed concrete is expanding the use. However, concrete structures is difficult to apply the general concrete for exposed concrete, due to complex section and compact reinforcement, increasingly. Therefore, in this paper, for application of high fluidity concrete as exposed concrete, exposed high fluidity concrete using fly ash and lime stone powder was manufactured and observed quality property(fluidity properties, mechanical properties and Surface Properties) of exposed high fluidity concrete. The experiments are based on the OPC and LSP10, was evaluated Impact on the quality of concrete according to mixing ratio of FA(0, 10, 15 and 20). As a result, fluidity properties, mechanical properties and Surface Properties of exposed high fluidity concrete were satisfied to requirement conditions, fluidity and surface finishability was improved depending on mix of fly ash and limestone powder. Through this, we utilize of basic research data for development of high fluidity concrete for exposed concrete.