• Title/Summary/Keyword: 콘크리트충전강관

Search Result 221, Processing Time 0.024 seconds

An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes (콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF

An Experimental Study on the Concrete Filled Circular Steel Columns with D/t (지름두께비를 고려한 콘크리트충전 원형강관기둥에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.215-218
    • /
    • 1995
  • This paper presents an experimental study on the strength and deformation of concrete-filled circular steel short columns. Six specimens of concrete-filled circular short columns were tested under concentric compressive load. For comparsion, three specimens of circular steel short columns were also loaded to failure. The ultimate strength, ductility, and confinement mechanism of columns were compared. In the comparison, the effect of witch-thickness ratio and concrete compressive strength on the behavior of colimns were examed. As a result, the axial load verse axial average strain relationship of concrete-filled circular steel columns was very stable, because of interactions between the concrete and steel, the strength are 13% and 30% larger than the strength extimated by simply superimposed method of the concrete and steel. The ratio of the circumferential to longitudinal strain increment, both measured on the steel suface, was 0.28 up to the longitudinal strain of 0.1%, increases from 0.3 to 0.8 between the strain of 0.1% to 0.3%, and 0.8 beyond the strain of 0.3%

  • PDF

Development of the Concrete for Concrete Filled Steel Tubular Columns (강관충전용 콘크리트의 재료개발에 관한 연구)

  • Kim, Jin-Cheol;Kim, Hoon;Park, Yon-Dong;Choi, Jin-Man;Lee, Deok-Chan;Lee, Do-Heon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.101-106
    • /
    • 1996
  • In this study, filling performance of concrete is investigated experimentally for the developmenmt of the concrete to be used in concrete filled steel tubular columns with inner diaphrams. Water-cement ratio with 3 levels, unit water contents with 5 levels, unit coarse aggregate contents with 5 levels, and slump flow with 3 levels are selected for test variables. For the estimation of the filling properties of the concrete, slump flow, V-type funnel time, U-type box height are measured and compared. A device which simulates the steel tubular column is designed and three kinds of concrete are tested with it. As the results, the filling performance is decreased with increasing coarse aggregate content. And, within the scope of this study, concretes with coarse aggregate content less than 880 kg/$\textrm{m}^3$ show good filling performance. To prevent excessive settlement of the concrete pumped into the steel tubular column, slump flow should be controlled within the limited range.

  • PDF

Study on High Strength and High Flowable Concrete to be Filled in Steel Tube Columns for Practical Application (합성강관 충전용 고강도.유동 콘크리트의 현장적용에 관한 연구)

  • 최응규;윤영수;이승훈;성상래;백승준;박원구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.370-375
    • /
    • 1996
  • This paper presents a series of tests to produce the high quality concrete to be filled inside the steel tube columns. This concrete filled steel tube system requires not only the high strength, but also the high flowable concrete. Laboratory test has been performed to clarify the material characteristics and to produce the optimal mix design proportion. Full-scale site mock-up test has been then carried out to simulate the actual construction conditions including the production of concrete at the remicon batch plant, transportation to the construction site, proper workability and man-power required.

  • PDF

Mock-up Tests of Concrete Filled Steel Tubular Columns (콘크리트 충전 강관 기둥의 시공에 관한 연구)

  • Lee, Deok-Chan;Choi, Jin-Man;Lee, Do-Heon;Kim, Hoon;Kim, Jin-Cheol;Park, Yon-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.382-387
    • /
    • 1996
  • Three concrete filled steel tubular columns with six inner diaphrams are constructed and tested under field conditions. The size and shape of three columns are exactly same. The cross section is $40\times40cm$, and the height is 9m. Each column is constructed with normal concrete, CFST concrete, and high flowing concrete, respectively. Concrete is pumped into bottom parts of steel tubular columns from a concrete pump on the ground. Test data indicate that the slump flow of the concrete place in the top of the column is lower than that of the concrete before pumping by about 10~20cm. Slump flow loss of high flowing concrete caused by pumping is high compared to the other concretes. Concrete pump pressure of high flowing concrete is somewhat higher than that of CFST concrete.

  • PDF

Evaluation for fire resistance performance of high strength CFT with loading (재하하중에 따른 고강도 CFT의 내화성능 평가)

  • Hong, Seok-Beom;Yoo, Jo-hyeong;Kim, Woo-Jae;Lee, Ji-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.184-185
    • /
    • 2013
  • Concrete filled steel Tube(CFT) columns have great strength but also fire resistance performance due to the heat storage effect of concrete. In this research, we focus on the fire performance of CFT using 100 MPa concrete without fire protection. We use steel fiber and nylon fiber for fire resistance. We perform the fire test of CFT specimen with loading 200, 300 and 400 ton. To investigate the effect of loading to fire resistance, we compare the fire resistance time according to the loading.

  • PDF

Seismic Evaluation of Welded-formed square Column-Beam Connection for External Diaphragm Stress path (외다이아프램 응력경로에 따른 용접조립 각형기둥-보 접합부의 내진성능 평가)

  • Kim, Sun Hee;Yom, Kyong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.311-322
    • /
    • 2014
  • Concrete filled tubular structure should be installed diaphragms for moment connection. However internal and through diaphragm should be special welded when connected to column tube. The other hand, that has become increase of stress concentration and extend of construction error. Therefore, In this study the seismic performance of beam to column connections with External Diaphragms and implement cycle loading experiment. we had evaluated seismic performance with mentioned experiment which is concrete filled or not, variable shapes, to be welded or not of diaphragm. Also, formula of strength of external diaphragm was analyzed and looked into adequacy with regard to formula of tension strength.

Experimental study on the Behavior CFT Column to H-Beam Endplate Connections with Penetrated High Strength Bolts (II) (관통형 고력볼트를 사용한 엔드플레이트형식 콘크리트 충전 각형강관 기둥.H형강 보 접합부의 거동에 관한 실험적 연구 (II))

  • Kim, Jae Keon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.109-116
    • /
    • 1999
  • This paper presents an experimental study on the behavior of CFT Column to H-Beam Endplate Connections with penetrated H/T bolts under monotonic loading. The object of this study is to estimate accurately the effect about the thickness of endplate and the arrangement of H/T bolts which was not got a grip on the results reported in the previous paper. Main parameters are the thickness of endplates (12mm, 16mm) and the arrangemement of H/T bolts (EP1, EP2, EP3 Type). The experimental results compared and analysed. 1) The specimens were classified by Bjorhovde's and EC3's method. 2) A formula to predict the ultimate moment of connection was derived based on the T-stub model, and theoretical value $(_tM_u)$ computed by the formula corresponded to the experimental value $(_eM_u)$.

  • PDF

Evaluation of Structural Behaviour of a Composite CFT Truss Girder Bridge (CFT 트러스 거더 합성형교의 구조거동 평가)

  • Chung, Chul-Hun;Kim, Hye-Ji;Song, Na-Young;Ma, Hyang-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.149-159
    • /
    • 2010
  • This paper presents an experimental study on the structural behavior of composite CFT truss girder bridge with full depth precast panels. The length of span is 20,000 mm. The CFT truss girder is a tubular truss composed of chord members made of concrete-filled and hollow circular tubes. To determine fundamental structural characteristics such as the strength and deformation properties of composite CFT truss girder bridge, static and dynamic tests were conducted. The natural frequencies calculated by the FEM are in good agreement with experimental results obtained from dynamic test. Bracing have only a small effect on the natural frequencies of composite CFT truss girder bridge as indicated by the FEM results. The yield strength and deformation of the composite CFT truss girder bridges were investigated through a static bending test. Besides, the test results showed that uniform distribution of shear connectors can be applicable in composite CFT truss girder bridges.

Fire Resistance of Circular Internally Confined Hollow Reinforced Concrete Column (원형 내부 구속 중공 철근콘크리트 기둥의 내화 성능)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Gyu-Sei;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2010
  • Reinforced-concrete (RC) columns are frequently designed and constructed. other types of columns includes composite types such as concrete-filled tube columns (CFT). Hollow RC columns may be effective in reducing both the self weight of columns and total amount of materials used. This is due to the fact that a hollow RC column possesses larger moment of inertia than that of solid RC columns of same cross sectional area. Despite the effectiveness the hollow RC column has not been popular because of its poor ductility performance. While the transverse reinforcements are effective in controlling the brittle failure of the outside concrete, they are not capable of resisting the failure of concrete of inner face which is in unconfined state of stress. To overcome these drawbacks, the internally confined hollow reinforced concrete (ICH RC), a new column type, was proposed in the previous researches. In this study, the fire resistance performance of the ICH RC columns was analyzed through a series of extensive heat transfer analyses using the nonlinear-material model program. Also, effect of factors such as the hollowness ratio, thickness of the concrete, and thickness of the internal tube on the fire resistance performance were extensively studied. Then the factors that enhance the fire-resistant performance of ICH RC were presented and analyzed.