• Title/Summary/Keyword: 콘크리트압축강도

Search Result 2,396, Processing Time 0.029 seconds

Improvement in Early Strength of Concrete Using Blast Furnace Slag by KOH (KOH에 의한 고로슬래그 미분말을 사용한 콘크리트의 초기강도 향상)

  • Lee, Ju-Sun;Song, Ri-Fan;Park, Byoung-Kwan;Back, Dae-Hyun;Pei, Chang-Chun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.53-56
    • /
    • 2009
  • This study reviewed the characteristics of concrete made of performance improving mixture materials based on KOH as a means to resolve the problems of initial quality reduction that result in concretes with blast furnace slag powder. Summarizing the results, first as the characteristics of fresh concrete, liquidity was found to reduce in general with increased BS substitution ratio. Objective range of liquidity was not satisfied in all mixes according to the use of performance improving mixture materials. Air capacity was satisfied to the objective range in all mixes. As the characteristics of hardened concrete, while compressive strength showed a decreasing trend with increasing BS substitution ratio at early age, increasing trend was shown by the plain with increasing BS substitution ratio at later age. On the other hand, K1 and K2 were only effective among mixture materials at early age, but K1F30 showed excellent strength at both early and later ages.

  • PDF

Regression analysis of the correlation between ultrasonic pulse velocity and strength to examine the demoulding time of non-sintered hwangto concrete (비소성 황토 콘크리트의 거푸집 탈형 시점 검토를 위한 초음파속도와 강도의 상관관계 회귀 분석)

  • Nam, Young-Jin;Kim, Won-Chang;Ryu, Jung-Lim;Choi, Hee-Yong;Choi, Hyeong-Gil;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.159-160
    • /
    • 2023
  • Recently, interest in reducing cement has been growing. Hwangto, an eco-friendly material, has advantages such as air purification effect and humidity control, but when used, accidents such as form collapse may occur due to low strength and reduced durability. In order to quantitatively evaluate the timing of mold demolding, we would like to evaluate the timing of mold demolding through correlation with compressive strength using ultrasonic pulse velocity. As a result, the time at which 5 MPa is developed is after 20 hours for the test specimen of W/B 41 , in the case of W/B 33, NC33 and HTC33-15 were equally expressed at 12 hours, and HTC33-30 was expressed at 16 hours.

  • PDF

A Study on the Performace Evaluation of Antimicrobial Concrete Using Liquid Reinforcing Antibiotics (액상 수밀성 항균제를 사용한 항균 콘크리트의 성능 평가에 관한 연구)

  • Kim, Gyu-Yong;Kim, Moo-Han;Lee, Eui-Bae;Cho, Bong-Suk;Khil, Bae-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.113-120
    • /
    • 2007
  • In this study, researches for the development of antibiotics and antimicrobial concrete were conducted to reduce biochemical corrosion of sewage concrete. First of all, desired performance, such as watertightness, antibiosis, homogeneity, workability and harmlessness, was proposed and performance of antibiotics and antimicrobial concrete were evaluated by them. As results of this study, dispersibility and antibiosis of liquid antibiotics superior to powdery antibiotics. Antibiosis of antimicrobial concrete was verified, and amount of elution of harmful and effective ingredients was little. In workability, setting time of antimicrobial concrete was delayed. Compressive strength and resistance to carbonation of antimicrobial concrete were more increased than ordinary concrete. Also, as little pore volume and closed structure of antimicrobial concrete were observed, watertightness of it was verified. Finally artificial accelerating test for biochemical corrosion was proposed, and its suitability was experimentally proved.

Reliability of Load-Carrying Capacity of RC Deep Beams (철근콘크리트 깊은 보의 내하력에 대한신뢰도 평가)

  • Cheon Ju-Hyun;Kim Tae-Hoon;Lee Sang-Cheol;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.955-962
    • /
    • 2005
  • Still no accurate theory exists for predicting ultimate shear strength of deep reinforced concrete beams because of the structural and material non-linearity after cracking. Currently, the load capacity assesment is performed for the upper structure of the bridges and containing non-reliability in the applications and results. The purpose in this study is to evaluate analytically the complex shear behaviors and normal strength for the reinforced concrete deep beams and to offer the accuracy load capacity assesment method based on the reliability theories. This paper presents a method for the load capacity assesment of reinforcement concrete deep beams using nonlinear finite element analysis. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material non-linearity is taken Into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. From the results, determine the reliability index for the failure base on the Euro Code. Then, calculate additional reduction coefficient to satisfy the goals from the reliability analysis. The proposed numerical method for the load capacity assesment of reinforced concrete deep beams is verified by comparison with the others methods.

A Study on Optimum Confined Effect for Internally Confined Hollow CFT Columns under Uniaxial Compression (일축압축을 받는 내부 구속 중공 CFT 기둥의 최적 구속 효과 연구)

  • Won, Deok Hee;Han, Taek Hee;Yoon, Na Ri;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.227-235
    • /
    • 2012
  • Recently, study of confining effect in column members is progressed. But these studies are limited to about RC column and external confining effect in hollow columns. Internal confining effect in hollow columns has not researched. Internal confining stress is assumed the same external confining stress in hollow columns. In this study, there are to investigate the internal direction confining effect in ICH CFT column by FEA analysis. FEA analysis methods have verified by experimental values. Parametric study has performed as thickness of internal tube, hollow ratio, diameter of column and bending stiffness between concrete and external tube. Modified equations have suggested to estimating economic and reasonable thickness of internal tube.

Mix Design Procedure of Structural Concrete Using Artificial Lightweight Aggregates Produced from Bottom Ash and Dredged Soils (바텀애시 및 준설토 기반의 인공 경량골재를 활용한 구조용 콘크리트의 배합설계 절차)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • The objective of this study is to propose a reliable mixing design procedure of concrete using artificial lightweight aggregate produced from expanded bottom ash and dredged soil. Based on test results obtained from 25 mixes, empirical equations to determine water-to-cement ratio, unit cement content, and replacement level of lightweight fine aggregates were formulated with regard to the targeted performance (compressive strength, dry density, initial slump, and air content) of lightweight aggregate concrete. From the proposed equations and absolute volume mixing concept, unit weight of each ingredient was calculated. The proposed mix design procedure limits the fine aggregate-to-total aggregate ratio by considering the replacement level of lightweight fine aggregates, different to previous approach for expanded fly ash and clay-based lightweight aggregate concrete. Thus, it is expected that the proposed procedure is effectively applied for determining the first trial mixing proportions for the designed requirements of concrete.

An Impurity Quantitative Study for Pavement Application in Recycled Waste Aggregates (재생골재의 도로적용을 위한 이물질 정량화 연구)

  • Park, Jun-Young;Cho, Yoon-Ho;Lim, Nam-Woong
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.21-29
    • /
    • 2005
  • One way to recycle the construction wastes is to use the waste concrete aggregates as the pavement materials. Although there are many studies and technical developments about waste concrete aggregates, the impurities produced in the process of the aggregate production prevent the use of the waste concrete aggregates in the pavement construction. In this study, the impurities included in the recycled waste aggregates were classified into inorganic and organic ones according to their characteristics, and the influences of each impurities on the pavement performance were presented. It was also showed that the limit of impurity content in the lean concrete base through the correlation between the inorganic impurity content and the compressive strength, and that in the granuler subbase layer through the correlation between the organic impurity content and the modified CBR. In conclusion, it is possible to apply waste concrete aggregates for the pavement when inorganic impurity content is less than 10% in the lean concrete base, and organic impurity content is less than 2% in granular subbase.

  • PDF

An Experimental Study on Flexural Behavior of One-Way Concrete Slabs Using Structural Welded Wire-Fabric (구조화 용접철강을 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • 허갑수;윤영호;양지수;김석중;정헌수
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 1994
  • Recently the construction of residential buildings faces many difficulties due to the shortage of building materials and works. Simplifying the stage of processing and assembling reinforcing rods and increasing the efficiency of them in reinforced concrete construction can be used to settle the difficulties. In the respect, structural wire-fabric and loop wire-fabric is utilized. The purpose of this study, on condition of being $210kg/cm^2$ concrete strength, is to analyze the structural and flexural properties of one-way concrete slabs by testing with different reinforcing type, tensile steel ratio based with minimum steel ratio, boundary condition and splice length which affect the maximum width of crack and ductility factor. From the test results, the ductility factor is approved that the slabs using deformed bar were much better than that using wire-fabric, and 30D of splice length was appropriate in the slabs as splice length. In the control of the maximum crack width the slabs using wire-fabric and loop wire-fabric were much better than that using deformed bar.

Flexural Performance Evaluation of HPFRCC Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCC의 휨 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.753-756
    • /
    • 2008
  • HPFRCC (High-Performance Fiber Reinforced Cementitious Composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of using PVA(polyvinyl alcohol) fibers, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCC. In this study, therefore, compressive and flexural tests were implemented to evaluate the compressive and flexural capacities of HPFRCC while the total fiber volume fractions was fixed at 2% and two different PVA fibers were used with variable fiber volume fractions to control the micro-crack and macro-crack with short and long fibers, respectively. Moreover, specimens reinforced with steel and PVA fiber simultaneously were also tested to estimate their behavior and finally find out the optimized mixture. In the result of these experiments, the specimen consists of 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed other specimens. When a little steel fibers added to the mixture with 2% PVA fibers, the flexural capacity was increased, however, when high steel fiber volume fractions applied, the flexural capacity was decreased.

  • PDF

Basic and Creepy Characteristics of High Performance Concrete Complexly Using Blast Furnace Slag Powder and Fly ash (고로슬래그 미분말 및 플라이애시를 복합사용한 고성능 콘크리트의 기초 및 크리프 특성)

  • Park, Byung-Kwan;Pei, Chang-Chun;Kim, Soo-Yung;Kim, Bok-Kyu;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.717-720
    • /
    • 2008
  • This study analyzed the basic characteristics and the characteristic of drying shrinkage and creep of high performance concrete complexly metathesized by BS and FA and the results are summarized as the followings. Regarding to the compressive strengths according to the passage of aging, OPC was appeared to be larger than B2F1 at the initial aging but B2F1 was appeared to be higher than OPC at aging 28days. Regarding to the changing rate of drying shrinkage according to the passage of aging, both OPC and B2F1 were appeared to be increased and, at aging 60days, B2F1 was appeared to be largely increased by about 42% as -21${\times}$10-6 및 -51${\times}$10-6 as compared to OPC. The transforming rate of creep was appeared to have been largely increased at the initial aging and then be smoothly increased somewhat as the aging was passed. And regardign to the transforming rate of creep after 60 days had been passed, B2F1 was appeared to be largely increased by about 13% as compared to OPC.

  • PDF