• Title/Summary/Keyword: 콘크리트압축강도

Search Result 2,396, Processing Time 0.027 seconds

Experimental Study on Tension-Hardening and Softening Characteristics in Reinforced Mortar with CSA Expansion Agent (CSA 팽창재를 혼입한 철근보강 모르타르의 인장 경화-연화 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • Expansion agent is a very effective admixture for prevention of cracking due to autogenous/drying shrinkage and this can induce internal chemical prestress to embedded reinforcement. In this paper, tension-softening and hardening in cement mortar with steel and CSA expansion agent are experimentally evaluated. Cement mortar with steel reinforcement is prepared and tensile strength test is performed for evaluation of cracking and tensile behavior. In spite of slightly reduced strength and elasticity in CSA mortar, significantly increased tension-hardening behavior is evaluated in CSA mortar with induced chemical prestress. Furthermore previous tension softening models are compared with the test results and improvement are proposed.

Experimental Study on the Flexural Behavior Effect of RC Beam Repaired and Strengthened by Latex Modified Concrete (라텍스개질콘크리트로 보수·보강된 RC 보의 휨 거동에 관한 실험적 연구)

  • Kim, Seong-Hwan;Yun, Kyong-Ku;Kim, Yong-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.503-510
    • /
    • 2009
  • Latex modified concrete (LMC) is a successful polymer-portland cement concretes, which have been developed and used for many years, in overlaying bridge decks and resurfacing industrial floors. The excellent bond strength to substrate, easy application and high resistance to impact, abrasion, wear, aggressive chemicals and freeze-thaw deterioration have made this material used widely. The objective of this study was to determine experimentally the load-deflection response and ultimate strength of reinforced RC beams. The cracking patterns and the mode of failure were observed. Because of excellent bond strength and repairing effects, the RC beams repaired by LMC at compression or tension zone showed over 100% recovery from damaged structures. The RC beams overlaid by LMC showed significant improvement at load carrying capacity as overlay thickness increases. However, the beams repaired of tension zone without shear stirrups almost showed no strengthen effect, and indicated an interfacial failures. The interfacial behavior was estimated by numerical method adopting the concept of shear flow.

An Experimental Study for Flexural Characteristic of Concrete Beam Reinforced with FRP Rebar under Static and Fatigue (FRP 보강근을 사용한 콘크리트 휨부재의 정적 및 피로특성에 대한 실험적 연구)

  • Sim, Jong-Sung;Park, Sung-Jae;Kang, Tae-Sung;Kwon, Dong-Wook;Lee, Ki-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.313-316
    • /
    • 2008
  • Corrosion of steel in the reinforced concrete structures is one of the main reason of degradation. It causes that lifetime of structures is shortened and maintenance cost is increased. And it also causes degradation of structures like bridges which are under repeated load. So, many research have been performed about FRP rebar. But there are few research about FRP rebar under fatigue. This study is to examine flexural characteristic of concrete beam reinforced with FRP(CFRP, GFRP) rebar under static and fatigue for considering the application. The specimens that used in this study are designed by ACI 440.1R-06 and reinforced with CFRP(CR) or GFRP(GR) overly. In the result of static bending test, all specimens were failed at compression phase. In fatigue test, the fatigue stress level was 60%, 70% or 80% of the static bending strength. Most of the specimens seemed to be compressive failure, but CR-60 and CR-70 specimens were failed with rupturing of tension bar.

  • PDF

An Experimental Study on Field Application of Recycled Aggregate Concrete - Focused on Recycled Aggregate from Underwater Crusher by Electric Impact System - (재생골재 콘크리트의 현장적용을 위한 실험적 연구 - 전기충격식으로 수중파쇄된 재생골재를 중심으로 -)

  • Park, Hee-Gon;Jung, Keun-Ho;Lim, Nam-Ki;Lee, Young-Do;Jung, Sang-Jin;Jung, Jae-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.1
    • /
    • pp.123-129
    • /
    • 2003
  • The production accounts of domestic by-product is increased after 1990's. It is worried about the life reduction of dump land, as dump land's capacity have reached to limitation and the amount of construction industrial wastes is going higher. Recently, recycling aggregates could be gained from the reconstruction works using recycle process, and the study research of recycle concretes developed concrete application methods. It could put some outcome of studies to practical use for concrete products. The methods of crushing waste concrete are going diverse. In this study. the fundamental experiments and recycling application is investigated and analyzed with use of recycling aggregate which made of mechanical crush and underwater electrical impact crush, and the difference between underwater electrical impact crush, mechanical crush and natural aggregates is studied.

Utilization of Stone Sludge Produced by Stone Block Manufacturing Process as Concrete Admixtures (석재 가공시 발생한 석분슬러지의 콘크리트 혼화재료로의 활용)

  • Jeong, Jin-Seob;Lee, Jong-Cheon;Yang, Keek-Young;So, Kwang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.83-89
    • /
    • 2008
  • The stone sludge produced during the manufacturing process of stone blocks is considered as one of industrial waste materials. This stone sludge are managed to either burying under the ground or stacking in the yard, but this disposal process is required an extra costs. The stone sludge disposal like burying or stacking also cause environmental pollutions such as ground pollution and subterranean water pollution. Thus, this study was conducted to explore the possibility of recycling of stone dust sludge as a concrete mixing material in order to extend recycling methods and to solve the shortage of aggregate caused by recently increased demand in construction. Based on the experiment results on various ratios of cement to stone sludge content, the compressive strengths of concrete were recorded in the range of $20{\sim}30N/mm2$. The results did not show any decrease in compressive strength due to the stone dust content. It can be concluded that the stone sludge produced by stone block manufacturing can be sufficiently recycled as one of concrete mixing materials in the aspect of compressive strength.

A Study of the Basic Properties of Lightweight Aggregate Concrete for Offshore Structures Application (해양구조물 적용을 위한 경량골재콘크리트의 기초물성에 관한 연구)

  • Kim, Myung-Sik;Jang, Hee-Suk;Kim, Chung-Ho;Baek, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • The various properties of concrete have been required, as civil engineering structures are getting larger and complicated. Therefore, the high performance of concrete, such as high strength, high fluidity, and low hydration heat, has been investigated largely. In this study, the properties of lightweight concrete-reducing self-weight of structure member have been studied in order to check the applicability of lightweight aggregate concrete to structural material. The experiments on compressive strength, splitting tensile strength, unit weight, and modulus of elasticity have been conducted with varying PLC, LWCI, LWCII, LWCII-SF5, LWCII-SF15 to check the basic properties. The compressive strength of 21MPa was obtained easily by using lightweight aggregate concrete and the addition of silica fume to increase the compressive strength slightly. To use lightweight aggregate concrete for civil engineering structures, systematic and rigorous studies are necessary.

Behavior of Circular Hollow Section R.C Member with Internal Corrugated Steel Tube (파형강관을 삽입한 중공원형단면 철근콘크리트 부재의 거동에 관한 연구)

  • Im, Jung-Soon;Kim, Sung-Chil;Jo, Jae-Byung;Lee, Soo-Keun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.1 s.8
    • /
    • pp.123-131
    • /
    • 2003
  • An experiment was carried out to investigate the mechanical behaviour of the circular hollow section reinforced concrete member with internal corrugated steel tube. A specimen, 50cm in diameter and 340cm in length, was made and tested by 3 points bending. The test load was increased slowly (quasi static) to the failure or unacceptable deformation. During the test, lateral displacement at mid point and longitudinal displacement of extreme fiber on compressive and tensile side of the specimen were measured. The measured data were analysed and compared with calculated results for the equivalent member without inserted corrugated steel tube. The comparison shows that the flexural strength and ductility of hollow section reinforced concrete members can be improved by inserting corrugated steel tubes inside.

Effects of compatibility between PNS Superplasticzer and soluble alkali of cements on performances of concrete (PNS계 고성능 감수제와 시멘트 수용성 알칼리양과의 상용성이 콘크리트 물성에 미치는 영향)

  • Ahn, Tae-ho;Park, Junhui;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.173-177
    • /
    • 2017
  • A polynaphthalenesulfonate (PNS) superplasticizer and its relation to the fluidity of cement paste (w/c = 0.35) has been investigated for three cements at a given dosage of PNS superplasticizer. Chemical properties of three cements were characterized with a XRD, XRF. The additive effects of $Na_2SO_4$ on the fresh concrete with w/c = 0.33 were also estimated by the measurement of compressive strength, slump, air content. The experimental results exhibited that the addition of sodium sulfate 2.6 % to the cement A and C improves slump loss. In case of cement E, the addition of sodium sulfate 1.3 % was effective.

Properties of Light Weight Foamed Concrete According to Curing Condition (양생조건에 따른 경량기포콘크리트의 특성)

  • Shin, Sang-Chul;Choi, Ji-Ho;Hong, Sung-Rog;Kim, Ji-Ho;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.237-239
    • /
    • 2011
  • This study was performed to investigate the influence of curing temperature on the properties of light weight foamed concrete, manufactured on-site construction according to the various experimental factor such as temperature of material, curing temperature in air(5, 10, 20℃), curing time in air(5, 10, 15hour), and target density of hardened state(0.8, 1.2t/㎥). As a result, the influence of the curing temperature on various properties of foamed concrete is greater than curing time. When increasing temperature and time in air curing, progress of hydration is fast and compressive strength is increasing more and more. However, when considering the productivity, minimum curing time is required 15hours at 5℃, 10hours at 10℃, and 5hours at 20℃. If this condition is not required, there is some crack due to volume expansion on the surface of light weight foamed concrete.

  • PDF

Fundamental Study on the Characteristics of Antiwashout Underwater Concrete (수중 비분리 콘크리트의 특성에 대한 기초적 연구)

  • 김명식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.74-82
    • /
    • 1996
  • In this study, the characteristics of antiwashout underwater concrete according to the using types of admixture were experimentally investigated. Especially, the comparison on the performance of seven types(CO-A, B, C, D, E, F, G) of the manufactured admixtures was carried out in the same mixing condition and proportions. Based on the results of experiments, the conclusions were summarized as follows : (1) The slump flow on most of specimens except by CO-F type were progressed very well. (2) In most of products, the measured values of suspensions, pH's and air contents were lower than their reference values. However, CO-B, CO-F and CO-G types exceeded the reference ones in suspension and pH. (3) The time lags between initial and final setting were about three hours in most of tests, however, the maximum difference of total setting time was ten hours in comparing with the admixture types. The unit weights were mostly lower than $2300kg/m^3$ and the compressive strengths cured by salt water were about 80% of the ones by fresh water. (4) Finally, in spite of some problems, most of the manufactured admixtures may be performed well their functions in antiwashout under-water concrete if the using quantities are properly controlled by the site experiments.

  • PDF