• Title/Summary/Keyword: 콘크리트압축강도

Search Result 2,392, Processing Time 0.024 seconds

Compression Lap Splice Length in Concrete of Compressive Strength from 40 to 70 MPa (40-70 MPa 콘크리트에서의 철근 압축이음 길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.401-408
    • /
    • 2009
  • A compression lap splice becomes an important issue due to development of ultra-high strength concrete. Current design codes regarding compression lap splice do not utilize merits of the improved strength of ultra-high strength concrete. Especially, a compression lap splice can be calculated longer than a tension lap splice according to the codes because they do not consider effects of compressive strength of concrete and transverse reinforcement. This anomaly confuses engineers in practice. Design equation is proposed for compression lap splice in 40 to 70 MPa of compressive strength of concrete. The proposed equation is based on 51 specimens conducted by authors. Basic form of the equation includes main parameters which are derived from investigating test results. Through two-variable non-linear regression analysis of measured splice strengths, a strength equation of compression lap splices is then derived. A specified splice strength is defined using a 5% fractile coefficient and a lap length equation is constructed. By the proposed equation, the anomaly of lap lengths in tension and compression is got rid of. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

Evaluation on Mechanical and Mixing Properties of Ultra-high Strength Concrete with fck=150MPa (150MPa 초고강도 콘크리트의 배합 및 재료역학특성 평가 연구)

  • Kang, Hoon;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.113-120
    • /
    • 2010
  • Ultra-High Strength Concrete (UHSC) demands a clear presentation of its mechanical properties, as distinct from normal strength concrete, and an evaluation of the serviceability of high-rise buildings that use ultra-high strength concrete. Ultra-high strength concrete fck=150MPa was manufactured with pre-mix cement, and an experimental study was conducted to evaluate the mixing properties and compressive strength, with the major variables being unit cement contents, water-binder ratio, and type of pre-mix cement. The test result showed that 150MPa concrete requires about 6~7 minutes of mixing time until each of the materials (ordinary Portland cement, silica fume, blast-furnace slag powder and anhydrite) are sufficiently revitalized. The slump flow of fresh concrete was shown to be about 700~800mm with the proper viscosity. The average value of concrete compressive strength was shown to be about 70% in 7 days, 85% in 14 days, and 95% in 28 days, for 56 days of concrete material age.

Evaluation of Bond-Slip Behavior of High Strength Lightweight Concrete with Compressive Strength 120 MPa and Unit Weight 20 kN/m3 (압축강도 120 MPa, 단위중량 20 kN/m3 고강도 경량 콘크리트 부착-슬립 거동 평가)

  • Dong-Gil Gu;Jun-Hwan Oh;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The demand for lightweight and high-strength materials is increasing. However, studies on the bond of concrete and reinforcing bars for high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of 20 kN/m3 to structural members are lacking. Therefore, in this paper, 108 specimens of high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of about 20 kN/m3 were fabricated, a direct pull-out test was performed, and the bond characteristics were evaluated by comparing the test results with design code. Compared to the decrease in unit weight, the solid bubble shows relatively little reduction in compressive strength and modulus of elasticity. It was f ound to have larger slip and parameter values than concrete with low compressive strength and unit weight.

The Mechanical Properties of Recycled Plastic Fiber-Reinforced Concrete (재활용 플라스틱 섬유보강 콘크리트의 역학적 특성)

  • Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.225-232
    • /
    • 2014
  • This paper concerns the mechanical properties of recycled plastic fiber-reinforced concrete. It presents experimental research results of recycled fiber-reinforced concrete with fiber volume fractions of 0, 0.5, 1.0, 1.5, and 2%. Experiments were performed to measure mechanical properties such as compressive strength, elastic modulus, tensile strength, and length changes. The results show that both compressive strength and elastic modulus decreased as fiber volume fraction increased. In addition, the experimental results show that recycled fiber-reinforced concrete is in favor of split tensile strength, flexural tensile strength, characteristic regarding crack mouth opening displacement, and length changes. The results of this study can be used to provide realistic information for modeling of mechanical properties in recycled plastic fiber-reinforced concrete in the future.

Mechanical Properties of Polypropylene Fiber mixed in Concrete and Granite Soil Concrete (폴리프로필렌섬유를 혼입한 콘크리트와 화강토콘크리트의 역학적 특성)

  • Jun, Hyung-Soon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.120-126
    • /
    • 2018
  • The study conducted an experiment in which residual aggregate and polypropylene fibers are mixed in concrete, and an experiment in which granite and polypropylene fibers are mixed. Two types of experiments, in particular, changed the amount of polypropylene fibers, and examined the mechanical properties of slump, compressive strength, tensile strength and the like. To establish a light and easy-to-use material for landscape construction and packaging material development by comparing two kinds of experimental results, comparing and analyzing residual aggregate as experimental materials and materials using granite soil to prevent partial destruction due to cracks in drying shrinkage. The more the amount of the PP fibers increases in concrete, the more the volume of the PP fibers increases, the less the slump is determined. As a result of the compressive strength, the cast-down earth concrete is measured to be about 59% to 71% of the concrete strength. As the amount of PP fibers mixed in increased, the compression strength showed a relative decrease. As a result of tensile strength, it is found that the granite concrete is about 68-67% of concrete tensile strength. It was found that the compression strength decreased as the amount of PP fibers mixed in concrete or fire-gant concrete was increased. Then, when polypropylene fibers are mixed in the concrete and the concrete, it is found that tensile strength is increased. By analyzing these results, a fixed amount of PP fiber is mixed in the concrete mixed with the granite soil and utilized for various structures in the field of landscape construction or materials related to packaging, the prevention and improvement effect of the structure is determined.

Size Effect on Axial Compressive Strength of Concrete (콘크리트의 축압축강도에 대한 크기효과)

  • 이성태;김민욱;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • In this study, the size effect on axial compressive strength for concrete members was experimentally investigated. Experiment of mode I failure, which is one of the two representative compressive failure modes, was carried out by using double cantilever beam specimens. By varying the eccentricity of applied loads with respect to the axis on each cantilever and the initial crack length, the size effect of axial compressive strength of concrete was investigated, and new parameters for the modified size effect law (MSEL) were suggested using least square method (LSM). The test results show that size effect appears for axial compressive strength of cracked specimens. For the eccentricity of loads, the influence of tensile and compressive stress at the crack tip are significant and so that the size effect is present. In other words, if the influence of tensile stress at the crack tip grows up, the size effect of concrete increases. And the effect of initial crack length on axial compressive strength is present, however, the differences with crack length are not apparent because the size of fracture process zone (FPZ) of all specimens in the high-strength concrete is similar regardless of differences of specimen slenderness.

Effect of Steam Curing on Compressive Strength of Slag Binder Concrete (증기양생이 고로슬래그 콘크리트의 압축강도에 미치는 영향)

  • Lim, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.338-343
    • /
    • 2017
  • In this study, blast furnace slag powder was used in concrete to help reduce carbon dioxide emissions and to recycle industrial waste. Blast furnace slag powder is a byproduct of smelting pig iron and is obtained by rapidly cooling molten high-temperature blast furnace slag. The powder has been used as an admixture for cement and concrete because of its high reactivity. Using fine blast furnace slag powders in concrete can reduce hydration heat, suppress temperature increases, improve long-term strength, improve durability by increasing watertightness, and inhibit corrosion of reinforcing bars by limiting chloride ion penetration. However, it has not been used much due to its low compressive strength at an early age. Therefore, this study evaluates the effects of steam curing for increasing the initial strength development of concrete made using slag powder. The relationship between compressive strength, SEM observations, and XRD measurements was also investigated. The concrete made with 30% powder showed the best performance. The steam curing seems to affect the compressive strength by destroying the coating on the powder and by producing hydrates such as ettringite and Calcium-Silicate-Hydrate gel.

Suggestion for Non-Destructive Testing Equation to Estimate Compressive Strength of Early Strength Concrete (조기강도 콘크리트의 압축강도 추정을 위한 비파괴검사 실험식의 제안)

  • Lee, Tae-Gyu;Kang, Yeon-Woo;Choi, Hyeong-Gil;Choe, Gyeong-Choel;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.229-235
    • /
    • 2016
  • In construction field, it used various technique for concrete formwork. Part of them, non-destructive test has been conducted to estimate a compressive strength of concrete easily such as rebound method and ultrasonic pulse velocity method etc. Former research has recommend proposed equation based on experimental data to investigate strength of concrete but it was sometimes deferent actual value of that from in field because of the few of data in case of early strength concrete. In this study, an experiment was conducted to analyze strength properties for early strength concrete using cylinder mold and $1,000mm{\times}1,000mm{\times}200mm$ rectangular specimen. And compressive strength of concrete was tested by non-destructive test, and calculated by the equation proposed former research. As a result, the non-destructive test results showed approximately 70 percent of the failure test value for all conditions, and worse reliability was obtained for high strength concrete samples when the ultrasonic pulse velocity method was used. Based on the scope of this study, the experimental equation for estimating compressive strength of early strength concrete from 24MPa to 60MPa was proposed.

A Study on the Prediction of the Strength and Axial Strain of High-Strength Concrete Columns Confined by Tie Reinforcement (띠근 보강 고강도 콘크리트 기둥의 강도 및 축변형 특성 산정에 관한 연구)

  • Park, Hoon-Gyu;Jang, Il-Young
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.197-208
    • /
    • 1999
  • The use of high-strength concrete which permits smaller cross sections, reduced dead loads, and longer spans has been getting more popular in tall buildings. However, there has been little research on behavior of high-strength concrete columns laterally reinforced with square ties and subjected to compressive loading. With the addition of transverse reinforcement which lead to triaxial compressive state, ductility behavior of high-strength column member shall be increased. In this study, rational quality and quantity evaluations were made to investigate the ultimate strength and strain ductility by confinement effect of tie reinforced high-strength concrete columns subject to uniaxial loads. Concrete failure theory at the triaxial compressive state and statistical results based on conventional experimental data were applied for this propose. Up to 185 columns, tested under monotonically increasing concentric loading, were evaluated in terms of strength and strain ductility. Analytical results show that confinement stress, maximum compressive strength, and increase of strain equations were developed with the consideration of concrete strength, yield strength, spacing, volumetric ratio, and configurations of tie reinforcement.

An Experimental Study on the Effects of Early-age Vibrations for Properties of Concrete (진동이 양생초기 콘크리트에 미치는 영향에 관한 연구)

  • 오병환;송혜금;조재열
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.81-87
    • /
    • 1998
  • 최근 들어 교통난 해소를 위한 도로확폭 공사나 파일항타 및 발파 등의 공사가 많이 진행되고 있으며, 이러한 경우 진동의 영향으로 콘크리트의 품질 저하에 영향을 미칠 것으로 예상된다. 이에 따라 본 연구에서는 진동과 굳지 않은 콘크리트에 미치는 영향을 평가하기 위하여 실험변수를 진동속도, 진동발생점등으로 나누어, 콘크리트의 압축강도, 부착강도를 측정하였다. 또한 응결시간을 측정하여 외부 진동용인이 응력에 미치는 영향을 평가하였다. 진동속도는 0.25cm/sec ~4.2cm/sec까지 변화시켰고, 진동가력시점은 타설 직후(0시간)부터 타설 후 2, 4, 6, 12 시간 후 에 진동을 가하였다. 본 연구의 실험 결과 진동속도 0.25cm/sec 에서는 압축 강도와 부착강도가 증가하는 반면에 진동속도 0.5cm/sec 이상에서는 압축강도는 5~12% 정도 감소하고 부착강도도 이와 유사하게 감소하는 것으로나타나고 있다. 응결시간은 0.25cm/sec의 작은 진동에서는 영향이 거의 없으나 0.5cm/sec 이상에서는 타설 직후의 진동시 응결시간이 다소 빨라지는 것으로 나타났다. 본 연구 결과, 양생초기 콘크리트의 진동 허용치는 약 0.3~0.4cm/sec 로 나타나고 있으며, 이것은 앞으로 실제 구조물의 시공시 진동규제치로서 하나의 유용한 자료가 될 수 있을 것으로 사료된다.