• 제목/요약/키워드: 코팅층

검색결과 1,181건 처리시간 0.031초

Calorizing 처리에서 코팅분말의 입자크기 및 코팅온도가 금속표면에 형성된 코팅층의 두께에 미치는 영향 (The Effect of Particle Size of Coating Powder and Coating Temperature on the Thickness of Coating Layer Formed on Metal Surface)

  • 하진욱;박해웅
    • 공업화학
    • /
    • 제10권7호
    • /
    • pp.1061-1065
    • /
    • 1999
  • Calorizing 처리에서 코팅분말의 입자크기 및 코팅온도가 금속표면에 형성된 코팅층의 두께에 미치는 영향을 XRD, SEM, 및 EDXS를 사용하여 고찰하였다. 코팅분말은 입자크기별로 3단계로 분리하였으며 코팅온도는 $950^{\circ}C$$980^{\circ}C$로 변화하였다. Calorizing 처리는 공기 및 아르곤 분위기에서 5시간 동안 행하였다. XRD 결과 공기분위기의 calorizing 처리과정에서 금속산화물($Al_2O_3$)과 질화물(AlN)이 형성됨을 관찰하였다. 공기 및 아르곤 분위기의 calorizing 처리 결과 코팅분말의 입자크기가 감소하고 코팅온도가 증가할수록 코팅층의 두께와 코팅층에서의 알루미늄의 함량이 증가함을 알 수 있었다.

  • PDF

Calorizing(Aluminizing) 코팅 층의 표면특성 고찰 (Characterization of Coating Layer formed on the Metal Surface by Calorizing)

  • 하진욱
    • 한국산학기술학회논문지
    • /
    • 제1권1호
    • /
    • pp.49-54
    • /
    • 2000
  • Calorizing(또는 Aluminizing)에서 코팅분말의 입자크기 및 코팅온도가 금속표면에 형성된 코팅 층의 특성에 미치는 영향을 SEM과 EDXS를 사용하여 자세히 고찰하였다. 코팅분말은 입자크기별로 3단계로 분리하여 사용하였으며 코팅온도는 950℃ 와 980℃로 변화하였다. Calorizing 처리는 팩 세멘테이션 방법을 사용하여 아르곤 분위기에서 5시간 동안 행하였다. Calorizing 처리 결과 코팅분말의 입자크기가 감소하고 코팅온도가 증가할수록 코팅 층의 두께와 코팅 층에서의 알루미늄의 함량이 증가하였다. 또한 오팅분말의 크기가 작은 경우(150-200 mesh) 코팅 층 표면에 형성된 기공이 현저히 감소하였고 표면의 균일성도 우수함을 알 수 있었다.

  • PDF

Filtered Backprojection에 의해 복원된 TRISO 핵연료입자 단층 영상을 이용한 코팅 두께 측정 시뮬레이션 (Simulation of the Coating Thickness Measurement in the TRISO-coated Fuel Particle Image Reconstruction by the Filtered Backprojection)

  • 김웅기;이영우;박지연;나성웅
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.713-716
    • /
    • 2005
  • 차세대 원자로로 부각되고 있는 고온가스냉각 원자로에서는 고온 안정성 및 핵분열생성물 차단 성능이 우수한 TRISO(Tri-Isotropic) 핵연료를 사용하고 있다. TRISO 핵연료 입자는 직경이 약 1mm인 구 형태로 입자의 중심에는 직경 $0.35^{\sim}0.6\;{\mu}m$의 핵연료 입자가 포함되며 입자 외곽을 코팅 층이 에워 싸고 있다. 이 코팅층은 완충(buffer) PyC 층, 내부 PyC 층, 외부 PyC 층으로 구성되어 있다. 각 코팅 층의 두께를 수십$^{\sim}$${\mu}m$ 범위이며 사양으로 정해져 있어 핵연료 입자 제조 후 사양을 만족하는지를 검사해야 한다. 본 연구에서는 TRISO 핵연료 입자 정보를 컴퓨터로 생성하고 가상의 X-선 래디오그래피 방법을 이용하여 투시 영상을 구성한 후 Filtered Backprojection 기법을 이용하여 단면 영상을 재구성하고 이 단면 영상을 이용하여 코팅 층의 두께를 정밀하게 측정하기 위한 모의 실험을 수행하였다. 경계선이 불명확한 투시영상이 아닌 경계선이 명확한 재구성 단면 영상을 이용하여 코팅 층의 두께를 약 2.3% 이내의 오차율로 정밀하게 측정하였다.

  • PDF

해양환경용 Al 합금 상에 형성된 플라즈마 전해 산화 코팅층의 질산 세륨 수용액에 의한 봉공 효과 (Sealing effects of cerium nitrate solution on plasma electrolytic oxidation coating formed on marine grade Al alloy)

  • 이정형;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.144-144
    • /
    • 2016
  • 플라즈마 전해 산화법(Plasma electrolytic oxidation)에 의해 형성된 코팅층은 특유의 기공구조로 인해 부식 환경에 노출 시 부식액의 침투가 급속히 이루어지는 단점이 있다. 이를 극복하기 위한 방법으로 유기코팅, sol-gel법, 폴리머 코팅 등에 의해 기공을 봉공(sealing)하는 방법이 제안되고 있다. 본 연구에서는 Al 합금의 플라즈마 전해 산화 처리 후 질산 세륨 수용액(Cerium nitrate solution)에 의한 봉공 효과를 확인하고자 하였다. PEO 코팅을 위한 전해액은 2g/L의 KOH와 $2g/L\;Na_2SiO_3$를 증류수에 용해시켜 준비하였다. PEO 코팅층은 Al 시편을 전해액 내에 위치시켜 양극으로 하고 STS를 음극으로 하여 $0.1A/cm^2$의 펄스 정전류밀도(주파수: 100Hz, 듀티비: 20%)를 15분 동안 인가하여 형성시켰다. 봉공을 위한 실링액은 증류수에 $0.3g/L\;H_2O_2$$1g/L\;H_3BO_3$를 첨가하고, $Ce(NO_3)_3$를 농도 변수로 첨가하여 준비하였으며, PEO 코팅 처리된 시편을 실링액에 침지하여 실링액의 농도와 침지시간을 달리하여 봉공을 실시하였다. 제작된 PEO 코팅층에 대해 SEM, EDS, XRD를 이용한 표면분석을 실시하였으며, 내식성을 확인하고자 동전위분극시험을 실시하였다. 연구 결과, 세륨 실링 처리된 PEO 코팅 층에서 미량의 세륨 성분이 검출되었으나, 세륨계 화합물 생성에 의한 마이크로 크기의 기공의 폐쇄는 관찰되지 않았다. 또한, 전기화학적 특성 평가 결과 실링 처리된 PEO 코팅층의 경우 Al 모재에 비해 2차수 정도 감소된 부식전류밀도를 나타내었다. 이 같은 내식성의 향상은 세륨 성분에 의한 부식 억제 효과 때문으로 판단된다.

  • PDF

차세대 나노 박막 다원계 모물질 설계 및 저마찰 코팅층 형성 기술

  • 문경일;이장훈;선주현;신승용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.91-92
    • /
    • 2013
  • 산업이 고도화, 다원화, 세계화되고 있는 현대사회는 다기능성, 고물성, 극한 내구성을 가지며 환경 친화적이면서 에너지 효율을 극대화시킬 수 있는 다기능 소재의 개발을 요구하고 있다. 이러한 시점에서 다양한 물성을 동시에 발현이 가능한 코팅 소재는 향후 미래에 중요한 원천 소재로서 주목되고 있다. 특히, 환경에 의해 쉽게 물성 및 구조의 변화가 쉬운 종래의 코팅소재와는 달리, 다양한 외부환경에서도 미세 구조 및 물성을 안정적으로 유지할 수 있는 신개념의 코팅 소재의 개발이 절실히 요구되고 있다. 이를 위해서는 코팅소재의 다 성분화가 필수적이다. 최근의 코팅 기술은 2가지 이상의 물성, 특히 서로 상반되는 물성을 동시에 구현할 수 있는 소재의 개발을 요구하고 있다. 이러한 물성의 구현을 위하여 더 많은 성분으로 구성되며 더욱 복잡한 조직으로 구성된 코팅층에 대한 개발이 필요하다. 본 연구에서 목표로 하는 신 개념의 원천소재기술은 4성분계 이상의 원료 물질을 단일 타겟으로 제조하여, 단순한 코팅공정으로서 단일 코팅층 내에 다양한 성분상이 10 nm 미만 크기의 나노 결정립/나노 비정질로 구성된 나노 복합 구조로 형성되도록 하는 기술을 개발하고자 하는 것이다. 이는 복합기능 3 이상의 다기능성 부여는 물론, 그림 1에 명시되어 있는 극한 기능성(광대역 윤활성, 전자 이동 제어에 의한 온도 저항 계수 및 전기 저항 조절, 고온 열적 안정성, 내산화성, 고열전도율, 초저마찰/내구성/초고경도성 등)이 구현되도록 하는 소재 개발과 원하는 물성을 구현할 수 있는 나노 복합 코팅층의 형성 공정으로 구성된다. 다성분계 모물질의 개발이 중요한 이유는 다수의 성분 원소를 합금 상태로 형성시킴으로서, 단일 소스에 의해 다양한 원소를 동시에 스퍼터링 및 증착이 가능하도록 할 수 있다는 장점을 가지기 때문이다. 특히, 타겟의 미세구조를 나노구조화 하는것을 통해, 스퍼터링 yield의 차이가 큰 원소일지라도 균일하게 증착시킬 수 있는 방법을 제시하고자한다. 이러한 연구는 다수의 성분 타겟을 사용함으로서 장비의 복잡성, 코팅의 재현성, 대형화 등의 문제점을 본질적으로 갖고 있는 기존 PVD 공정의 문제점을 해결하기 위한 최적의 대안이라할 수 있다. 본 발표에서는 3가지 이상의 다기능성 구현을 위한 가장 중요한 원천기술이라 할 수 있는 다성분계 타겟 모물질 제조 기술과 제조된 모물질을 이용하여 제조된 저마찰 코팅층과 그 물성에 대해 소개하고자 한다.

  • PDF

플라즈마 용사법에 의한 Hydroxyapatite코팅층의 제조와 미세구조 (Fabrication and Microstructure of Hydroxyapatite Coating Layer by Plasma Spraying)

  • 이치우;오익현;이형근;이병택
    • 한국세라믹학회지
    • /
    • 제41권3호
    • /
    • pp.259-265
    • /
    • 2004
  • 플라즈마 용사법에 의해 나노크기의 하이드록시 아파타이트 분말을 지르코니아 소결체 기판에 용사한 후 코팅층의 미세조직에 대해 조사하였다. 나노크기의 하이드록시 아파타이트 분말은 Ca(NO$_3$)$_2$$.$4$H_2O$과 (NH$_4$)$_2$HPO$_4$ 용액을 이용한 침전법에 의해 성공적으로 합성되었다. 코팅 후 지르코니아 기판과 코팅층 계면에서 균열은 발생하지 않았으며 코팅층의 두께는 150-250 $\mu\textrm{m}$였다. 나노크기의 하이드록시아파타이트 분말과 용사된 HAp코팅층에서는 비이상적인 상들의 출현이 발견되지 않았다. 80$0^{\circ}C$에서 열처리된 코팅층의 경우 하이드록시 아파타이트 이외에 TTCP와 $\beta$-TCP같은 상이 관찰되었지만 열처리온도 90$0^{\circ}C$에서 TTCP와 $\beta$-TCP상은 소멸되었다. XRD 분석결과, 열처리온도 110$0^{\circ}C$에서 HAp코팅층은 높은 결정화도를 나타내었다.

FGM-TBC의 열충격 특성에 미치는 진공 플라즈마 용사조건의 영향

  • 정영훈;변응선;남욱희;이구현;강정윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.524-524
    • /
    • 2012
  • Thermal Barrier Coating (TBC)은 미사일, 로켓발사체와 같이 고온에 노출되는 장비를 열로부터 보호하기 위한 코팅이다. 일반적인 Thermal Barrier Coating (TBC)은 모재와 코팅층간의 낮은 접합력과 높은 열충격으로 인한 박리가 많이 나타난다. 그래서 접합력을 높이고, 열충격을 줄이기 위해 모재와 코팅층 사이에 본드코팅층을 만든 Duplex - Thermal Barrier Coating (Duplex-TBC)이 개발되었다. 그러나 Duplex - Thermal Barrier Coating (Duplex-TBC)은 금속재료인 본드코팅층과 세라믹재료인 탑코팅층 사이에서 박리가 많이 발생한다. 이러한 문제점을 해결하기 위해 두 가지 분말을 동시에 코팅하여 본드코팅과 탑코팅의 경계가 없는 Functional Gradient Material - Thermal Barrier Coating (FGM-TBC)의 연구가 필요하다. 본 연구에서는 Functional Gradient Material - Thermal Barrier Coating (FGM-TBC)의 열충격 특성에 미치는 진공 플라즈마 용사 조건의 영향을 조사하였다. Functional Gradient Material - Thermal Barrier Coating (FGM-TBC)는 진공 플라즈마 용사장치를 사용하여 Cu-Cr 합금위에 코팅하였다. 거리, Carrier gas flow, 그리고 챔버 내부의 압력을 달리하여 제조하였다. 사용한 분말은 본드코팅용으로 Amdry 962와 내열 세라믹코팅을 위해 204NS를 사용하였고, 각각 분말 공급조건을 조절하여 두 분말의 비율을 달리하였다. 제조한 Functional Gradient Material - Thermal Barrier Coating (FGM-TBC) 코팅은 전기로에서 50분간 가열한 후, 수조에서 10분간 냉각하는 열충격 실험을 통해 열차폐 성능을 평가 하였다. 이러한 과정에서 진공 플라즈마 용사 조건 및 FGM 조성과 비율이 내열충격 특성에 미치는 영향을 미세조직학적 관점에서 고찰하였다.

  • PDF

상온진공과립분사에 의한 TiO2 코팅층에 미치는 공정변수의 영향 (Effect of processing parameters on TiO2 film by room temperature granule spray in vacuum)

  • 김한길;박윤수;방국수;박동수;박찬
    • 한국결정성장학회지
    • /
    • 제27권1호
    • /
    • pp.22-27
    • /
    • 2017
  • 상온진공과립분사에 의해 slide glass 기판 위에 $1{\sim}30{\mu}m$의 두께를 가진 $TiO_2$ 코팅층을 제조하였다. $TiO_2$ granule 과립분말은 $1.5{\mu}m$의 평균 입도를 가진 Rutile 형태로 $600^{\circ}C$에서 4시간 하소 과정을 거쳤다. 공정변수로서는 반복횟수, 가스유량속도 및 과립투입속도로 하여 코팅층을 제조하였다. 반복횟수가 증가할수록 코팅층의 두께는 비례적으로 증가하였다. 이는 반복횟수의 증가에도 코팅층이 형성될 수 있는 적절한 운동에너지가 작용한 것을 알 수 있다. 가스유량속도에 따라 코팅층의 두께도 증가하였으나 1.7 V의 분말공급량에서는 25 LPM의 유량까지는 코팅층의 두께가 증가했지만, 35 LPM(L/min)의 유량에서는 두께가 감소하였다. 15 LPM의 낮은 유량속도에서는 분말공급량이 충분하더라도 성막에 필요한 운동에너지의 부족으로 코팅 층의 두께가 비례적으로 증가하지 않았다. $TiO_2$ 코팅층의 미세구조는 주사전자현미경 및 고성능 투과전자현미경을 이용하여 분석하였다.

Nanoindentation과 유한요소해석을 통한 표면처리강판의 박막 경도 및 탄성계수 측정

  • 고영호;이정민;김병민;고대철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.142-142
    • /
    • 2004
  • 박막으로 표면처리한 다양한 강판이 자동차 차체와 부품, 가전제품 등의 제조를 위해 여러 가지 판재 성형공정에 적용되고 있으나, 제품 개발기간과 비용 감소, 성형과정에서 표면 코팅층의 특성 변화로 인해 성형성 열화와 성형불량을 줄이면서, 제품의 고정밀화, 고품질화를 실현하기 위해서는 코팅층에 대한 기계적 특성과 마찰거동을 명확히 규명하는 것이 반드시 필요하다 현재 나노 마이크로 수준인 코팅층의 기계적 물성치를 측정하기 위해 가장 널리 사용되는 방법은 나노 인덴테이션이다.(중략)

  • PDF

플라즈마 용사에 의한 Al-SiCp 복합재료 코팅층의 제조 (Preparation of Al-SiCp Composite Coating by Plasma Thermal Spray)

  • 민준원;유승을;김영정;김정석;서동수
    • 한국세라믹학회지
    • /
    • 제40권5호
    • /
    • pp.460-467
    • /
    • 2003
  • 기계적 합금화법에 의해 준비된 복합분말을 이용하여 용사공정에 의해 알루미늄 모재에 Al-SiC$_{p}$ 복합재료 코팅층을 형성하였다. 24h milling 후 복합화된 분말을 제조할 수 있었으며, 이 분말을 용사하여 복합재료 코팅층을 형성할 수 있었다. 코팅층의 두께 및 기공율과 공정변수와 관계를 분석하였으며, 경도의 증가를 확인하였다. 또한 TEM분석에 의해 Al-Si-C-O 화합물의 존재를 확인하였다.