DOI QR코드

DOI QR Code

Effect of processing parameters on TiO2 film by room temperature granule spray in vacuum

상온진공과립분사에 의한 TiO2 코팅층에 미치는 공정변수의 영향

  • Kim, Han-Gil (Department of Materials Science and Engineering, Pukyong National University) ;
  • Park, Yoon-Soo (Department of Materials Science and Engineering, Pukyong National University) ;
  • Bang, Kook-Soo (Department of Advanced Materials System Engineering, Pukyong National University) ;
  • Park, Dong-Soo (Functional Materials Group, Korea Institute of Machinery and Materials) ;
  • Park, Chan (Department of Materials Science and Engineering, Pukyong National University)
  • 김한길 (부경대학교 재료공학과) ;
  • 박윤수 (부경대학교 재료공학과) ;
  • 방국수 (부경대학교 신소재시스템공학과) ;
  • 박동수 (재료연구소 기능성재료그룹) ;
  • 박찬 (부경대학교 재료공학과)
  • Received : 2016.10.07
  • Accepted : 2016.12.16
  • Published : 2017.02.28

Abstract

$TiO_2$ films, thickness of $1{\sim}30{\mu}m$ were deposited on glass substrate at room temperature by room temperature granule spray in vacuum. The starting powder was calcinated at $600^{\circ}C$ for 4 h using $Al_2O_3$ crucible in the furnace. The particle size of the $TiO_2$, $1.5{\mu}m$ was measured by a particle size analyzer. The effect of different process parameters such as number of pass, gas flow rate and feeder voltage was studied. As the number of passes increased, the film thickness increased proportionally due to adequate kinetic energy conserved. The effect of three different flow rates (i.e. 15, 25, and 35 LPM) on deposited film was investigated. As gas flow rate increased, the film thickness increased up to 25 LPM and then decreased. Higher feeder voltage with low flow rate of 15 LPM resulted in unsufficient coating thickness due to insufficient kinetic energy. Microstructure of $TiO_2$ films was investigated by scanning electron microscope and high resolution tramission electron microscope.

상온진공과립분사에 의해 slide glass 기판 위에 $1{\sim}30{\mu}m$의 두께를 가진 $TiO_2$ 코팅층을 제조하였다. $TiO_2$ granule 과립분말은 $1.5{\mu}m$의 평균 입도를 가진 Rutile 형태로 $600^{\circ}C$에서 4시간 하소 과정을 거쳤다. 공정변수로서는 반복횟수, 가스유량속도 및 과립투입속도로 하여 코팅층을 제조하였다. 반복횟수가 증가할수록 코팅층의 두께는 비례적으로 증가하였다. 이는 반복횟수의 증가에도 코팅층이 형성될 수 있는 적절한 운동에너지가 작용한 것을 알 수 있다. 가스유량속도에 따라 코팅층의 두께도 증가하였으나 1.7 V의 분말공급량에서는 25 LPM의 유량까지는 코팅층의 두께가 증가했지만, 35 LPM(L/min)의 유량에서는 두께가 감소하였다. 15 LPM의 낮은 유량속도에서는 분말공급량이 충분하더라도 성막에 필요한 운동에너지의 부족으로 코팅 층의 두께가 비례적으로 증가하지 않았다. $TiO_2$ 코팅층의 미세구조는 주사전자현미경 및 고성능 투과전자현미경을 이용하여 분석하였다.

Keywords

References

  1. B.D. Hahn, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee and H.E. Kim, "Effect of the $HA/{\beta}$-TCP ratio on the biological performance of calcium phosphate ceramic coatings fabricated by a room-temperature powder spray in vacuum", J. Am. Ceram. Soc. 92 (2009) 793. https://doi.org/10.1111/j.1551-2916.2009.02949.x
  2. B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin and H.E. Kim, "Mechanical and in vitro biological performances of hydroxyapatitecarbon nanotube composite coatings deposited on Ti by aerosol deposition", Acta Biomaterialia. 5 (2009) 3205. https://doi.org/10.1016/j.actbio.2009.05.005
  3. J.H. Ryu, J.J. Choi, B.D. Hahn, D.S. Park, W.H. Yoon and K.H. Kim, "Fabrication and ferroelectric properties of highly denselead-free piezoelectric $(K_{0.5}Na_{0.5})NbO_{3}$ thin film by aerosol-deposition", Appl. Phys. Lett. 90 (2007) 152901. https://doi.org/10.1063/1.2720751
  4. B.D. Hahn, K.H. Ko, D.S. Park, J.J. Choi, W.H. Yoon, C. Park and D.Y. Kim, "Effect of post-annealing on the microstructure and electrical properties of PMN-PZT films prepared by aerosol deposition process (in Korean)", J. Korean Ceram. Soc. 43 (2006) 106. https://doi.org/10.4191/KCERS.2006.43.2.106
  5. J.J. Choi, J.H. Jang, D.S. Park, B.D. Hahn, W.H. Yoon and C. Park, "Electrical properties of lead zinc niobatelead zirconate titanate thick films formed by aerosol deposition process", Solid State Phenomena. 124-126 (2007) 169. https://doi.org/10.4028/www.scientific.net/SSP.124-126.169
  6. S. Sugimoto, T. Maeda, R. Kobayashi, J. Akedo, M. Lebedev and K. Inomata, "Magnetic properties of Sm-Fe-N thick film magnets prepared by the aerosol deposition method", Transactions on Magnetics 39 (2003) 2986. https://doi.org/10.1109/TMAG.2003.816715
  7. J.J. Choi, J.H. Lee, D.S. Park, B.D. Hahn, W.H. Yoon and H.T. Lin, "Oxidation resistant coating of LSM and LSCF on SOFC metallic interconnects by aerosol deposition process", J. Am. Ceram. Soc. 90 (2007) 1926. https://doi.org/10.1111/j.1551-2916.2007.01641.x
  8. B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin and H.E. Kim, "Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications", Thin Solid Films 518 (2010) 2194. https://doi.org/10.1016/j.tsf.2009.09.024
  9. A.E. Porter, P. Taak, L.W. Hobbs, M.J. Coathup, G.W. Blunn and M. Spector, "Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy", Biomaterials 25 (2004) 5199. https://doi.org/10.1016/j.biomaterials.2003.12.018
  10. L. Sun, C.C. Berndt, K.A. Gross and A. Kucuk, "Material fundamental sand clinical performance of plasmasprayed hydroxyapatite coatings: A review", J. Biomed. Mater. Res. 58 (2001) 570. https://doi.org/10.1002/jbm.1056
  11. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel and R. Bizios, "Enhanced functions of osteoblasts on nanophase ceramics", Biomaterials 21 (2000) 1803. https://doi.org/10.1016/S0142-9612(00)00075-2