• Title/Summary/Keyword: 코팅슬러리

Search Result 51, Processing Time 0.034 seconds

세라믹막을 이용한 O/W 타입 에멀젼의 정밀여과

  • 현상훈;조철구;김계태;강환규
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.80-80
    • /
    • 1994
  • 세라믹막을 이용한 oil 폐수 처리의 기초 연구로서 정밀여과용 세라믹막의 제조와 oil(kerosene)-in-water 타입 에멀젼에 대한 막분리 효율이 연구되었다. 정밀여과 막으로서는 압출(extrusion)법으로 성형하여 제조한 $\alpha$-알루미나 튜브(평균 기공크기 0.9 $\mum$)와 이들 튜브(담체)내부에 $ZrO_2$ 또는 $Al_2O_3$ 다공성 박막을 코팅한 2층 구조의 복합막들을 사용하였다. 담체의 높은 투과율 ($1700 l/m^2\cdot h$ at $\Deltap = 1$ atm)을 어느정도 유지하면서 막분리 효율을 증대시킬 수 있는 새로운 슬러리 코팅법이 개발되엇으며, 코팅후 950-1300$\circ$C 에서 열처리한 코팅층의 두께와 평균 기공크기는 각각 5 - 20 $\mum$정도 이었다. 정밀여과막의 특성평가를 위하여 막 제조조건에 따른 코팅층의 두께 및 결함유무를 SEM으로 일단 관찰한 후에 Bubble Point Test와 Mercury Porosimeter를 이용하여 측정한 최대 및 평균 기공반경과 물의 투과량으로부터 막 전체에 대한 결함 유무와 결함의 허용한도등을 비교 분석하였다.

  • PDF

A Study on Chloride Threshold Level of Polymer Inhibitive Coating Containing Calcium Hydroxide (수산화칼슘을 혼입한 폴리머 방청 코팅의 부식 임계치 향상에 대한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.713-719
    • /
    • 2008
  • Various types of coatings have been developed for use as reinforcement in concrete and to resist chloride environment. The most commonly used coatings are inhibited and sealed cement slurry coating, cement polymer compositing coating and epoxy coating. Cement slurry offers passive protection, epoxy coating offers barrier protection whereas polymer coating offers both passive protection and barrier protection. Moreover, damage during handling of the steel may result in disbondment of the epoxy coating, which would increase the risk of localized corrosion. In the present study, inhibiting technique was used to increase the calcium hydroxide content at the interface up to 20%. Calcium hydroxide provides a high buffering capacity that resists a local fall in pH and thus maintains the alkaline environment necessary to prevent chloride corrosion. This study examines the use of a calcium hydroxide coating on the steel surface to enhance the pH buffering capacity of steel-concrete interface. Finally, the chloride threshold level (CTL) of polymer inhibitive coating calcium hydroxide is evaluated.

A Review on Ultrathin Ceramic-Coated Separators for Lithium Secondary Batteries using Deposition Processes (증착 기법을 이용한 리튬이차전지용 초박막 세라믹 코팅 분리막 기술)

  • Kim, Ucheol;Roh, Youngjoon;Choi, Seungyeop;Dzakpasu, Cyril Bubu;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.134-153
    • /
    • 2022
  • Regardless of a trade-off relationship between energy density and safety, it is essential to improve both properties for future lithium secondary batteries. Especially, to improve the energy density of batteries further, not only thickness but also weight of separators including ceramic coating layers should be reduced continuously apart from the development of high-capacity electrode active materials. For this purpose, an attempt to replace conventional slurry coating methods with a deposition one has attracted much attention for securing comparable thermal stability while minimizing the thickness and weight of ceramic coating layer in the separator. This review introduces state-of-the-art technology on ceramic-coated separators (CCSs) manufactured by the deposition method. There are three representative processes to form a ceramic coating layer as follows: chemical vapor deposition (CVD), atomic layer deposition (ALD), and physical vapor deposition (PVD). Herein, we summarized the principle and advantages/disadvantages of each deposition method. Furthermore, each CCS was analyzed and compared in terms of its mechanical and thermal properties, air permeability, ionic conductivity, and electrochemical performance.

Microstructure Control of Porous Ceramics by Freeze-Drying of Aqueous Slurry (동결건조공정을 이용한 다공성 세라믹스의 미세구조 제어)

  • 황해진;문지웅
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.229-234
    • /
    • 2004
  • In this study, we proposed new forming process for a porous ceramic body with unique pore structure. h tubular-type porous NiO-YSZ body with radially aligned pore channels was prepared by freeze-drying of aqueous slurry. A NiO-YSZ slurry was poured into the mold, which was designed to control the crystallization direction of the ice, followed by freezing. Thereafter the ice was sublimated at a reduced pressure. SEM observations revealed that the NiO-YSZ porous body showed aligned large pore channels parallel to the ice growth direction, and fine pores are formed around the outer surface of the tube. It was considered that the difference in the ice growth rate during the freezing process resulted in such a characteristic microstructure. Bilayer consisting of dense thin electrolyte film of YSZ onto the tubular type porous body has been successfully fabricated using a slurry-coating process followed by co-firing. It was regarded that the obtained bilayer structure is suitable for constructing electrode-support type electrochemical devices such as solid oxide fuel cells.

Reclamation of Waste Lubricating Oil Using Ceramic Composite Membranes (세라믹 복합막을 이용한 폐윤활유 재생)

  • 현상훈;김계태
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.59-59
    • /
    • 1996
  • 막분리에 의한 폐윤활유 재생공정을 개발하기 위한 기초 연구로써 폐윤활유 분리/재생용으로 적합한 복층(multilayer)세라믹 복합막의 제조와 합성막의 폐유 분리 효율등이 연구되었다. 결함이 없고 두께가 균일한 지르코니아 복합막 (기공크기 0.07 $\mu$m 이하)은 압출 성형법으로 제조한 튜브형 $\alpha$-알루미나 담체 (외경 7.8 mm, 두께 0.6 mm, 기공크기 0.7 $\mu$m)내부표면에 역침지 인상법(reverse dip-drawing technique)에 의하여 지르코니아 슬러리를 코팅 한 후 950$\circ$C에서 1시간 열처리하여 제조 되었다. 또한 지르코니아 복합막 위에 니타니아 졸-겔 코팅을 한 후 450$\circ$C에서 2시간 열처리하여 기공크기가 15 nm정도인 3층 복합막을 제조 하였다. SEM, Bubble Point Test, Mercury Porosimeter 그리고 분획 분자량 측정등에 의하여 복합막의 코팅층 두께, 결함유무 및 막의 기공크기등을 분석하였다.

  • PDF

Evaluation and Optimization of Dispersion in Commercial LTCC Powder (상용 LTCC 원료의 분산 평가 및 최적화)

  • Kwon, Hyeok-Jung;Shin, Hyo-Soon;Yeo, Dong-Hoon;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.41-42
    • /
    • 2006
  • LTCC 공정의 안정화를 위한 기본적인 공정인 분산의 최적화를 위하여 상용 LTCC 분말인 MLS-22(NEG, Japan)를 이용하여 다양한 평가 방법으로 분산성을 평가하였다. 분산제의 종류와 함량을 조절하여 슬러리의 점도, 표면 거칠기, 코팅된 슬러리의 표면 미세구조를 측정하였다. SN-dispersant 9228 분산제를 사용한 경우 0.4wt%첨가되었을 때 최적의 분산 특성을 얻을 수 있었으며 각 평가 방법은 잘 일치하는 분산의 평가 경향을 나타내었다.

  • PDF

A Study on Protection of Stainless Steel Substrate against Corrosion in Molten Carbonate by Formation of Aluminum Diffusive Layer Using a Slurry Coating Method (슬러리 코팅법에 의한 스테인레스 스틸 표면에서의 알루미늄 확산막 제조 및 용융탄산염 내에서의 내식 특성 연구)

  • Nam S. W.;Hwang E. R.;Magtanyuk A. P.;Hong M. Z.;Lim T. H.;Oh I. -H.;Hong S. -A.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.136-140
    • /
    • 2000
  • A stainless steel separator for a molten carbonate fuel cell is usually coated with aluminum diffusive layer to protect its surface against corrosion by the molten carbonate at high temperatures. In this study, a relatively simple method was devised to form the aluminum diffusive layer on a stainless steel substrate. Slurry coating of aluminum on the substrate followed by heat treatment under reducing atmosphere at $650\~800^{\circ}C$ produced the aluminum diffusive layer of $25\~80{\mu}m$ thickness. The thickness of aluminum diffusive layer increased with increasing the temperature or duration of the heat-treatment. The corrosion resistance against molten carbonate under oxidizing atmosphere was significantly improved by aluminum diffusive layer formed by the sluny painting and heat treatment method. Moreover, the sample prepared in this study showed corrosion behavior similar to the sample with aluminum diffusive layer prepared by ion vapor deposition and heat treatment.

Evaluations of Corrosion Resistance of Coated Steel Using Polymer Cement Slurry (폴리머 시멘트 슬러리로 코팅한 도장철근의 내식성 평가)

  • Jo, Young-Kug;Kim, Young-Jib;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 2003
  • Reinforced concrete structures under sever conditions such as marine structures, bridges and structures constructed with aggregates(dredged from sea), can be deteriorated from corrosion of the reinforcing bars. The purpose of this study is to evaluate the anti-corrosive performance of coated steel using polymer cement slurry. Polymer cement slurry with various polymer dispersions and corrosion inhibiting agent were coated to the surface of bars, and tested for accelerated corrosion tests. Tests include immersion in NaCl 10% solution, chloride ion spray, autoclave cure, autoclave cure after carbonation, penetration of NaCl 10 % solution, carbonation after penetration of NaCl 10% solution. Test results, show that the anti-corrosive performace is considerably improved by using polymer cement slurry at surface of steel. And this trend is marked by adding of corrosion inhibiting agent. This difference of the anti-corrosive properties is hardly recognized according to types of polymer dispersions. The coated steel using polymer cement slurry will be improved to a great extent compared to those of plain steel when increasing content of chloride ion in cement concrete.

Preparation of Porous Silica Support and TiO2 Coating by Sol-Gel Method (다공성 실리카 지지체 제조 및 Sol-Gel법에 의한 TiO2코팅)

  • 한요섭;박재구
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.548-554
    • /
    • 2004
  • A sol-gel method was applied to coat TiO$_2$ on porous silica prepared using slurry foaming method from silica. from the results of XRD, SEM, and BET, the anatase phase was firstly observed at the coated supports with the heated of 50$0^{\circ}C$. The coated supports with the heated of $700^{\circ}C$ had the maximum anatase peak, and the particle size of coated TiO$_2$ was about 1 ${\mu}{\textrm}{m}$. Bending strength and gas permeability of the porous silica were measured for the feasibility as a catalytic supports. In case of the uncoated porous materials with the strength of 2.4 MPa, the strength increased to 3.9∼4.3 MPa after the coating process regardless of the heating temperature. On the other hand, the permeability of the uncoated porous materials decreased from 770${\times}$10$^{-13}$ $m^2$ to 363${\times}$10$^{-13}$ $m^2$ after the coating process, and it decreased with the increasing heating temperature.