Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.4.134

A Review on Ultrathin Ceramic-Coated Separators for Lithium Secondary Batteries using Deposition Processes  

Kim, Ucheol (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Roh, Youngjoon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Choi, Seungyeop (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Dzakpasu, Cyril Bubu (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.4, 2022 , pp. 134-153 More about this Journal
Abstract
Regardless of a trade-off relationship between energy density and safety, it is essential to improve both properties for future lithium secondary batteries. Especially, to improve the energy density of batteries further, not only thickness but also weight of separators including ceramic coating layers should be reduced continuously apart from the development of high-capacity electrode active materials. For this purpose, an attempt to replace conventional slurry coating methods with a deposition one has attracted much attention for securing comparable thermal stability while minimizing the thickness and weight of ceramic coating layer in the separator. This review introduces state-of-the-art technology on ceramic-coated separators (CCSs) manufactured by the deposition method. There are three representative processes to form a ceramic coating layer as follows: chemical vapor deposition (CVD), atomic layer deposition (ALD), and physical vapor deposition (PVD). Herein, we summarized the principle and advantages/disadvantages of each deposition method. Furthermore, each CCS was analyzed and compared in terms of its mechanical and thermal properties, air permeability, ionic conductivity, and electrochemical performance.
Keywords
Ultrathin ceramic-coated separator; Deposition; Sputtering; Thermal stability; Lithium secondary battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Cools, L. Astoreca, P. S. E. Tabaei, M. Thukkaram, H. D. Smet, R. Morent, and N. D. Geyter, Surface treatment of polymers by plasma, Surface modification of polymers: Methods and applications, 31-65 (2019).
2 T. Lee, Y. Lee, M. H. Ryou, and Y. M. Lee, A facile approach to prepare biomimetic composite separators toward safety-enhanced lithium secondary batteries, RSC Adv., 5, 39392-39398 (2015).   DOI
3 S. J. Moss, A. M. Jolly, and B. J. Tighe, Plasma oxidation of polymers, Plasma Chem. Plasma Process., 6, 401-416 (1986).   DOI
4 R. M. France and R. D. Short, Plasma treatment of polymers: The effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study, Langmuir, 14, 4827-4835 (1998).   DOI
5 W. A. Pliskin, Comparison of properties of dielectric films deposited by various methods, J. Vac. Sci. Technol., 14, 1064 (1977).   DOI
6 S. Chowdhury, M. T. Laugier, and I. Z. Rahman, Effect of target self-bias voltage on the mechanical properties of diamond-like carbon films deposited by RF magnetron sputtering, Thin Solid Films, 468(1-2), 149-154 (2004).   DOI
7 Y. Lee, H. Lee, T. Lee, M. H. Ryou, and Y. M. Lee, Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries, J. Power Sources, 294, 537-544 (2015).   DOI
8 J. H. Park, W. Park, J. H. Kim, D. Ryoo, H. S. Kim, Y. U. Jeong, D. W. Kim, and S. Y. Lee, Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-power lithium-ion polymer batteries, J. Power Sources, 196, 7035-7038(2011).   DOI
9 Y. Roh, U. Kim, and Y.-M. Lee, Physical and electrochemical properties of ceramic-coated separators with different ceramic types for lithium-ion batteries, J. Korean Battery Soc., 1, 106-112 (2021).   DOI
10 H. Jeon, Y. Roh, D. Jin, M. H. Ryou, Y. C. Jeong, and Y. M. Lee, Crosslinkable polyhedral silsesquioxane-based ceramic-coated separators for Li-ion batteries, J. Indust. Eng. Chem., 71, 277-283 (2019).   DOI
11 A. Yanguas-Gil, Growth and transport in nanostructured materials: Reactive transportation in PVD, CVD, and ALD, Springer (2016).
12 S. Li, S. Wang, D. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golverg, and G. Eda, Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals, Appl. Mater. Today, 1, 60-66 (2015).   DOI
13 Zheng, B., Fu, Y., Wang, K., Schuelke, T., & Fan, Q. H, Electron dynamics in radio frequency magnetron sputtering argon discharges with a dielectric target, Plasma Sources Science and Technology, 30, (2021).
14 R. Boulmani, M. Bendahan, C. Lambert-Mauriat, M. Gillet, and K. Aguir, Correlation between rf-sputtering parameters and WO3 sensor response towards ozone, Sens. Actuators B Chem., 125, 622-627 (2007).   DOI
15 P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56, 159-172 (2000).   DOI
16 S. Ido, M. Kashiwagi, and M. Takahashi, Computational studies of plasma generation and control in a magnetron sputtering system, Jpn. J. Appl. Phys., 38, 4450 (1999).   DOI
17 G. Brauer, B. Szyszka, M. Vergohl, and R. Bandorf, Magnetron sputtering - milestones of 30 years, Vacuum, 84(12), 1354-1359 (2010).   DOI
18 T. Z. Zhuang, J. Q. Huang, H. J. Peng, L. Y. He, X. B. Cheng, C. M. Chen, and Q. Zhang, Rational integration of polypropylene/graphene oxide/nafion as ternarylayered separator to retard the shuttle of polysulfides for lithium-sulfur batteries, Small, 12, 381-389 (2016).   DOI
19 Y. Qi, B. Deng, X. Guo, S. Chen, J. Gao, T. Li, Z. Dou, H. Ci, J. Sun, Z. Chen, R. Wang, L. Cui, X. Chen, K. Chen, H. Wang, S. Wang, P. Gao, M. H. Rummeli, H. Peng, Y. Zhang, and Z. Liu, Switching vertical to horizontal graphene growth using faraday cage-assisted PECVD approach for high-performance transparent heating device, Adv. Mater., 30(8), 1704839 (2018).   DOI
20 R. Behrisch and W. Eckstein (eds.), Sputtering by particle bombardment: Experiments and computer calculations from threshold to MeV energies, Springer Science & Business Media (2007).
21 Z. Li, M. Peng, X. Zhou, K. Shin, S. Tunmee, X. Zhang, C. Xie, H. Saitoh, Y. Zheng, Z. Zhou, Y. Tang, Z. Li, M. Peng, X. Zhou, K. Shin, X. Zhang, C. Xie, Y. Zheng, Y. Tang, Z. Zhou, and S. Tunmee, In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes, Adv. Mater., 33, 2100793 (2021).   DOI
22 Y. Liu, S. Xiong, J. Wang, X. Jiao, S. Li, C. Zhang, Z. Song, and J. Song, Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites, Energy Storage Mater., 19, 24-30 (2019).   DOI
23 S. H. Choi, S. J. Lee, D. J. Yoo, J. H. Park, J. H. Park, Y. N. Ko, J. Park, Y.-E. Sung, S.-Y. Chung, H. Kim, and J. W. Choi, Marginal magnesium doping for highperformance lithium metal batteries, Adv. Energy Mater., 9(41), 1902278 (2019).   DOI
24 K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010 (2016).   DOI
25 K. L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci., 48(2), 57-170 (2003).   DOI
26 M. Kim and J. H. Park, Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery, J. Power Sources, 212, 22-27 (2012).   DOI
27 P. M. Sousa, A. J. Silvestre, N. Popovici, and O. Conde, Morphological and structural characterization of CrO2/Cr2O3 films grown by Laser-CVD, Appl. Surf. Sci., 247, 423-428 (2005).   DOI
28 K. Chan and K. K. Gleason, Initiated CVD of poly (methyl methacrylate) thin films, Chem. Vap. Depos., 11(10), 437-443 (2005).   DOI
29 K. Peng, B. Wang, Y. Li, and C. Ji, Magnetron sputtering deposition of TiO2 particles on polypropylene separators for lithium-ion batteries, RSC Adv., 5, 81468-81473 (2015).   DOI
30 R. M. France and R. D. Short, Plasma treatment of polymers effects of energy transfer from an argon plasma on the surface chemistry of poly(styrene), low density poly(ethylene), poly(propylene) and poly(ethylene terephthalate), J. Chem. Soc., Faraday Trans., 93, 3173-3178 (1997).   DOI
31 S. Wu, J. Ning, F. Jiang, J. Shi, and F. Huang, Ceramic nanoparticle-decorated melt-electrospun PVDF nanofiber membrane with enhanced performance as a lithium-ion battery separator, ACS Omega, 4, 16309-16317 (2019).   DOI
32 A. Gogia, Y. Wang, A. K. Rai, R. Bhattacharya, G. Subramanyam, and J. Kumar, Binder-free, thin-film ceramic-coated separators for improved safety of lithiumion batteries, ACS Omega, 6, 4204-4211 (2021).   DOI
33 H. Lee, X. Ren, C. Niu, L. Yu, M. H. Engelhard, I. Cho, M.-H. Ryou, H. Soo Jin, H.-T. Kim, J. Liu, W. Xu, J.-G. Zhang, H. Lee, X. Ren, C. Niu, L. Yu, J. Liu, W. Xu, J. Zhang, M. H. Engelhard, I. Cho, M. Ryou, H. S. Jin, and H. Kim, Suppressing lithium dendrite growth by metallic coating on a separator, Adv. Funct. Mater., 27, 1704391 (2017).   DOI
34 D. H. Han, M. Zhang, P. X. Lu, Y. L. Wan, Q. L. Chen, H. Y. Niu, and Z. W. Yu, A multifunctional separator with Mg(OH)2 nanoflake coatings for safe lithium-metal batteries, J. Energy Chem., 52, 75-83 (2021).   DOI
35 K. Wen, L. Liu, S. Chen, and S. Zhang, A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator, RSC Adv., 8, 13034-13039 (2018).   DOI
36 M. M. U. Din and R. Murugan, Metal coated polypropylene separator with enhanced surface wettability for high capacity lithium metal batteries, Sci. Rep., 9, 1-12 (2019).   DOI
37 P. Arora and Z. Zhang, Battery separators, Chem. Rev., 104, 4419-4462 (2004).   DOI
38 H.-S. Jeong, D. W. Kim, Y. U. Jeong, and S.-Y. Lee, Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoridehexafluoropropylene)-based ceramic composite separators for lithium-ion batteries, J. Power Sources, 195(18), 6116-6121 (2010).   DOI
39 S.-K Kim, J.-Y Sohn, J.-H Park, H.-M Jang, B.-J Shin, S.-Y Lee, and J.-H Hong, Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same, US Patents 7, 709, 152 (2022).
40 Q. Liu, M. Xia, J. Chen, Y. Tao, Y. Wang, K. Liu, M. Li, W. Wang, and D. Wang, High performance hybrid Al2O3/poly(vinyl alcohol-co-ethylene) nanofibrous membrane for lithium-ion battery separator, Electrochim. Acta, 176, 949-955 (2015).   DOI
41 Y. Roh, D. Jin, E. Kim, S. Byun, Y. S. Lee, M. H. Ryou, and Y. M. Lee, Highly improved thermal stability of the ceramic coating layer on the polyethylene separator via chemical crosslinking between ceramic particles and polymeric binders, Chem. Eng. J., 433, 134501 (2022).   DOI
42 G. L. Doll, B. A. Mensah, H. Mohseni, and T. W. Scharf, Chemical vapor deposition and atomic layer deposition of coatings for mechanical applications, J. Thermal Spray Technol., 19, 510-516 (2010).   DOI
43 Y. S. Jung, A. S. Cavanagh, L. Gedvilas, N. E. Widjonarko, I. D. Scott, S. H. Lee, G. H. Kim, S. M. George, and A. C. Dillon, Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes, Adv. Energy Mater., 2, 1022-1027 (2012).   DOI
44 C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, C. Yang, K. Fu, Y. Zhang, E. Hitz, and L. Hu, Protected lithium-metal anodes in batteries: From liquid to solid, Adv. Mater., 29, 1701169 (2017).   DOI
45 J. bin Wang, Z. Ren, Y. Hou, X. L. Yan, P. Z. Liu, H. Zhang, H. X. Zhang, and J. J. Guo, A review of graphene synthesisatlow temperatures by CVD methods, New Carbon Mater., 35, 193-208 (2020).   DOI
46 E.C. Cengiz, O. Salihoglu, O. Ozturk, C. Kocabas, and R. Demir-Cakan, Ultra-lightweight chemical vapor deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries, J. Alloys Compd., 777, 1017-1024 (2019).   DOI
47 A. C. Dillon, A. W. Ott, J. D. Way, and S. M. George, Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence, Surface Sci., 322, 230-242 (1995).   DOI
48 F. Chen, H. Yang, X. Liu, D. Chen, X. Xiao, K. Liu, J. Li, F. Cheng, B. Dong, Y. Zhou, Z. Guo, Y. Qin, S. Wang, and W. Xu, Facile fabrication of multifunctional hybrid silk fabrics with controllable surface wettability and laundering durability, ACS Appl. Mater. Interfaces, 8, 5653-5660 (2016).   DOI
49 C. H. Chao, C. te Hsieh, W. J. Ke, L. W. Lee, Y. F. Lin, H. W. Liu, S. Gu, C. C. Fu, R. S. Juang, B. C. Mallick, Y. A. Gandomi, and C. Y. Su, Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries, J. Power Sources, 482, 228896 (2021).   DOI
50 J. Moon, J. Y. Jeong, J. I. Kim, S. Kim, and J. H. Park, An ultrathin inorganic-organic hybrid layer on commercial polymer separators for advanced lithium-ion batteries, J. Power Sources, 416, 89-94 (2019).   DOI
51 J. A. Oke, Atomic layer deposition and other thin film deposition techniques: from principles to film properties, J. Mater. Res. Technol., 21, 2481-2514 (2022).   DOI
52 J. W. Lee, A. M. Soomro, M. Waqas, M. A. U. Khalid, and K. H. Choi, A highly efficient surface modified separator fabricated with atmospheric atomic layer deposition for high temperature lithium ion batteries, Int. J. Energy Res., 44(8), 7035-7046 (2020).   DOI
53 Z. Liu, Y. Jiang, Q. Hu, S. Guo, L. Yu, Q. Li, Q. Liu, and X. Hu, Safer lithium-ion batteries from the separator aspect: Development and future perspectives, Energy Environ. Mater., 4, 336-362 (2021).   DOI
54 W. Wang, Y. Yuan, J. Wang, Y. Zhang, C. Liao, X. Mu, H. Sheng, Y. Kan, L. Song, and Y. Hu, Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDFHFP separator, ACS Appl. Energy Mater., 2, 4167-4174 (2019).   DOI
55 Z. Du, C. Guo, L. Wang, A. Hu, S. Jin, T. Zhang, H. Jin, Z. Qi, S. Xin, X. Kong, Y. G. Guo, H. Ji, and L. J. Wan, Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries, ACS Appl. Mater. Interfaces, 9, 43696-43703 (2017).   DOI
56 H. Chen, Q. Lin, Q. Xu, Y. Yang, Z. Shao, and Y. Wang, Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries, J. Membr. Sci., 458, 217-224 (2014).   DOI
57 T. Lee, W. K. Kim, Y. Lee, M. H. Ryou, and Y. M. Lee, Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries, Macromol. Res., 22, 1190-1195 (2014).   DOI
58 S. Swann, Magnetron sputtering, Phys. Technol., 19, 67 (1988).   DOI
59 M. H. Suhail, G. M. Rao, and S. Mohan, dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films, J. Appl. Phys., 71, 1421 (1998).
60 M. Mieno and T. Yoshida, Preparation of cubic boron nitride films by RF sputtering, Jpn. J. Appl. Phys., 29, 1175-1177 (1990).
61 J. A. Thornton, Magnetron sputtering: basic physics and application to cylindrical magnetrons, J. Vac. Sci. Technol., 15, 171 (1998).   DOI
62 R. D. Arnell and P. J. Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol., 112(1-3), 170-176 (1999).   DOI
63 M.V. Castro, C.J. Tavares, Dependence of Ga-doped ZnO thin film properties on different sputtering process parameters: Substrate temperature, sputtering pressure and bias voltage, Thin Solid Films, 586, 13-21 (2015).   DOI
64 S. Lobe, A. Bauer, S. Uhlenbruck, and D. FattakhovaRohlfing, Physical vapor deposition in solid-state battery development: From materials to devices, Adv. Sci., 8(11), 2002044 (2021).   DOI
65 T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu, J. Chu, C. Yan, C. Wu, Y. Yan, W. He, J. Xiong, Y. Li, C. Yan, J. B. Goodenough, and X. Duan, Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries, Joule, 2, 2091-2104 (2018).   DOI
66 H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857-3886 (2014).   DOI
67 R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/ water process, J. Appl. Phys., 97, 121301 (2005).   DOI
68 S. M. George, A. W. Ott, and J. W. Klaus, Surface chemistry for atomic layer growth, J. Phys. Chem., 100(31), 13121-13131 (1996).   DOI
69 D. M. Mattox, Physical vapor deposition (PVD) processes, Met. Finish., 97, 1 (2000).
70 Y. Yoo, B. G. Kim, K. Pak, S. J. Han, H. S. Song, J. W. Choi, and S. G. Im, Initiated chemical vapor deposition (iCVD) of highly cross-linked polymer films for advanced lithium-ion battery separators, ACS Appl. Mater. Interfaces, 7, 18849-18855 (2015).   DOI
71 Y. Lin and X. Chen (eds.), Advanced nano deposition methods, John Wiley & Sons (2016).
72 H. Adachi and K. Wasa, Handbook of sputtering technology, 2nd ed., 3-39, Elsevier (2012).
73 A. Baptista, F. Silva, J. Porteiro, J. Miguez, and G. Pinto, Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands, Coatings, 8(11), 402 (2018).   DOI
74 J. Greener, G. Plearson, and M. Cakmak (eds.), Roll-toroll manufacturing: Process elements and recent advances, John Wiley & Sons (2018).
75 S. M. George, Atomic layer deposition: An overview, Chem. Rev., 110(1), 111-131 (2010).   DOI
76 H. Conrads and M. Schmidt, Plasma generation and plasma sources, Plasma Sources Sci. Technol., 9, 441 (2000).   DOI
77 W. D. Westwood, S. Maniv, and P. J. Scanlon, The current-voltage characteristic of magnetron sputtering systems, J. Appl. Phys., 54, 6841 (1983).   DOI
78 M. B. Assouar, O. Elmazria, L. le Brizoual, and P. Alnot, Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices, Diam. Relat. Mater., 11(3-6), 413-417 (2002).   DOI
79 M. Kim, Y.-C. Nho, and J. H. Park, Electrochemical performances of inorganic membrane coated electrodes for Li-ion batteries, J. Solid State Electrochem., 14, 769-773 (2010).   DOI
80 T. Nestler, R. Schmid, W. Munchgesang, V. Bazhenov, J. Schilm, T. Leisegang, and D. C. Meyer, Separators - Technology review: Ceramic based separators for secondary batteries, AIP Conference Proceedings, 1597, 155 (2014).
81 S.-Y. Lee, D.-J. Seo, J.-Y. Sohn, S.-K. Kim, J.-H. Hong, Y.-S. Kim, and H.-M. Jang, Organic/inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same, US Patents 7, 638, 241 (2022).
82 G. Horpel, V Hennige, C. Hying, S. Augustin, and C. Jost, Use of a ceramic separator in lithium ion batteries, comprising an electrolyte containing ionic fluids, US Patents 9, 214, 659 (2022).
83 D. Yeon, Y. Lee, M. H. Ryou, and Y. M. Lee, New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries, Electrochim. Acta, 157, 282-289 (2015).   DOI
84 B. Jung, B. Lee, Y. C. Jeong, J. Lee, S. R. Yang, H. Kim, and M. Park, Thermally stable non-aqueous ceramiccoated separators with enhanced nail penetration performance, J. Power Sources, 427, 271-282 (2019).   DOI
85 D. BARRECA, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, A. Pozza, and E. Tondello, CVD Co3O4 nanopyramids: a nano-platform for photo-assisted H2 production, Chem. Vap. Depos., 16(10-12), 296-300 (2010).   DOI