• Title/Summary/Keyword: 코어벽

Search Result 36, Processing Time 0.025 seconds

Lateral Drift Control Technique of High-Rise Shear Wall Core Structural System (고층 전단벽 코어구조시스템의 횡변위 제어방안)

  • Han, Seong-Baek;Kang, Myoung-Hee;Nam, Kyung-Yun;Lee, Seong-Su;Lee, Han-Joo;Kim, Ho-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.151-154
    • /
    • 2008
  • This study presents the efficient lateral drift control optimal technique that can control quantitatively lateral drift of high-rise structures. To this end, optimal design algorithm is formulated and then lateral drift control optimal program is developed. The 130 story shear wall core model is considered to illustrate the features of lateral drift control technique proposed in this study

  • PDF

Seismic Capacity according to Structural System of High-rise Apartment (고층 아파트 구조시스템에 따른 내진성능 분석)

  • Lee, Minhee;Cho, So-Hoon;Kim, Jong-Ho;Kim, Hyung-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.149-154
    • /
    • 2019
  • The structural system of domestic high-rise apartments can be divided into two parts; the core wall system, which is composed of walls concentrated in the center and the shear wall system, which comprises a great number of walls distributed in the plan. In order to analyze the lateral behavior of each system, buildings with typical domestic high-rise apartment plans were selected and nonlinear static analysis was performed to investigate the their collapse mechanism. From the force-displacement relation derived from nonlinear static analysis, response modification factor was evaluated by calculating the overstrengh and ductility factor, which are important in the seismic response. The ductility of core wall system is small, but as it is governed by wind load, its overstrength is greatly estimated, and its response modification factor is calculated by the overstrengh factor. Due to a large number of walls, shear wall system has a large ductility, making the response modification factor considerably large.

A Development of the Multicore DLP System based on Firewall (방화벽기반 통합 멀티코어 DLP(정보유출방지) 시스템 개발)

  • Cho, Hyun-Kyu;Shin, Dong-Jin;Han, Seung-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.953-955
    • /
    • 2011
  • 본 제품은 RFC(Recursive Flow Classification) 알고리듬의 네트워크 접근제어를 구현한 방화벽 기반의 정보유출방지 솔루션이다. 네트워크 단에서의 정보유출은 대부분 이메일, 메신저, 웹하드, P2P 등을 통해 이루어진다. 따라서 본 제품은 업로드 트래픽의 크기를 제한하고 사용자가 송수신하는 모든 메일을 필터링 하여 저장한다. 웹상에서는 정보유출 가능성이 있는 URL을 등록, 사용을 제한하는 기능을 통하여 네트워크를 통한 정보유출의 가능성을 원천적으로 차단한다. 동시에 사용자 중심의 인터페이스와 성능이 뛰어나면서도 저렴한 통합 플랫폼을 제공함으로써 중소기업환경에 최적화된 네트워크 정보보안의 대안을 제시한다.

Development of Efficient Seismic Analysis Model using 3D Rigid-body for Wall-Frame Structures with an Eccentric Core (삼차원 T형강체를 이용한 편심코어를 가진 전단벽-골조 구조물의 효율적인 지진해석모델 개발)

  • Park, Yong-Koo;Lee, Dong-Guen;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • In a shear wall-frame structural system, the structural response is determined by the interaction between the shear wall in bending mode and the frame in shear mode. In order to effectively consider these characteristics of a shear wall-frame structure, the simplified numerical model using the T-shape rigid body was suggested in the previous study. Based on the previously proposed model, an efficient numerical model for a wall-frame structure with an eccentric core has been proposed in this study. To this end, the previously proposed 2D model is extended to the 3D model and it is enhanced by considering torsion effects. As a result, the enhanced model can be applied to the analysis of a wall-frame structure with an eccentric core as well as a centric core.

Shear Lag Phenomenon in Shear/Core Wall of Wall-Frame Structures (골조-전단벽 구조에서 전단/코어벽의 Shear Lag 현상)

  • 이은진;이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.215-222
    • /
    • 2001
  • This study investigates the shear lag phenomenon existing in the shear wall of the wall-frame structure. Elastic analysis of such structures is carried out using a 3-D frame analysis program. The structural parameters governing the shear lag phenomenon are wall height and thickness. The analysis shows that the overturning moment due to external lateral load is resisted by both of the shear/core wall and the external frame. Severe unstable stresses are identified in height ratio of about 0.7 The taller or thinner wall shows the smaller shear lag phenomenon.

  • PDF

Effect of Shear Wall Stiffness on Optimal Location of Core and Offset Outrigger Considering Floor Diaphragm (바닥 격막을 고려한 코어 및 오프셋 아웃리거 구조의 최적위치에 대한 전단벽 강성의 영향)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.37-47
    • /
    • 2019
  • The study purposed to investigate the optimal location of core and offset outrigger system considering floor diaphragm. To accomplish this aim, a structure design of 70 stories building was performed by using MIDAS-Gen. And the leading factors of the analysis research were the slab stiffness, the stiffness of shear wall and the outrigger position in plan. Based on the analysis results, we analyzed and studied the influences of the shear wall stiffness and the slab stiffness on optimal location of core and offset outrigger considering floor diaphragm. The results of the analysis study indicated whether the slab stiffness, the stiffness of shear wall and the outrigger position in plan had an any impact on optimal location in outrigger system of tall building. Also the paper results can give help in getting the structural engineering materials for looking for the optimal position of outrigger system in the high-rise building.

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

Efficient Three Dimensional Analysis of High-Rise Shear Wall Building with Openings (개구부가 있는 고층 벽식 구조물의 효율적인 3차원 해석)

  • 김현수;남궁계홍;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.351-365
    • /
    • 2002
  • The box system that is composed only of reinforced concrete walls and slabs we adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take significant amount of computational time and memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were performed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

Analysis of Lateral Behavior in Core and Offset Outrigger System (코어 및 오프셋 아웃리거 구조시스템의 수평거동에 대한 분석)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • The research intended to understand the lateral behavior in core and offset outrigger system. To achieve this goal, a structural analysis and design of 70 stories building was carried out by making use of MIDAS-Gen. And the primary parameters of this analysis were the stiffness of outrigger and the location of outrigger in plan. On the basis of the analysis results, we analyzed the lateral behavior of structural elements such as slab, outrigger and exterior columns in core and offset outrigger. In this analysis research, it is indicated that the stiffness of outrigger and the outrigger location in plan had an any impact on lateral behavior in outrigger system of tall building. Specially, slab stresses in core outrigger system were highly distributed in the slab near the outrigger system to connect shear walls and exterior columns while slab stresses in offset outrigger system were highly distributed in the slab between the outrigger system and shear walls. Also the study results can be of significant help to obtaining the engineering data for the reasonable structure design of the high-rise outrigger system.

Dynamic Analysis of RC Piloti-Type Building Subjected to Earthquake Loads (지진하중이 작용하는 RC 필로티 건축물의 동적해석)

  • Kim, Ju-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.121-128
    • /
    • 2021
  • Piloti-type buildings in Korea are usually composed of lower frames and upper shear wall structures. Piloti-type buildings have been seriously damaged during earthquakes because of the construction of soft and weak stories. Piloti-type buildings with edge cores are two-way unsymmetric planes. This paper analyzed and obtained the dynamic response for structures modeled using a multistory two-way asymmetric system. The numerical results, obtained using the Newmark-β method, show the time-history responses and trends of maximum displacements and shear forces. The purpose of this study is to evaluate the effect of reinforcement on dynamic response when a shear wall or brace is reinforced in the corner opposite the piloti.