• Title/Summary/Keyword: 켄터키블루그래스

Search Result 60, Processing Time 0.028 seconds

Comparison of Thatch Accumulation in Warm-Season and Cool-Season Turfgrasses under USGA and Mono-layer Soil Systems (USGA 지반 및 약식지반에서 난지형과 한지형 잔디의 대취축적 비교)

  • Kim, Kyoung-Nam;Kim, Byoung-Jun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.129-136
    • /
    • 2010
  • This study was initiated to investigate thatch accumulation in several turfgrasses grown under two soil systems. The 45 centimeter deep USGA system was constructed with rootzone, intermediate and drainage layers. The mono-layer system, however, was made with only a 30cm rootzone layer. Turfgrasses used in the study were comprised of 3 varieties from Korean lawngrass of Warm-Season Grass(WSG) and 3 blends and 3 mixtures from Cool-Season Grass(CSG). A total of 9 turfgrass treatments were replicated three times in RCBD in both systems. Cultural practices for the research plot followed a typical maintenance program for highly managed turf. Treatment differences for thatch accumulation were observed among the turfgrasses in both soil systems. Thatch under the USGA system was 9% greater than under the mono-layer system due to its more favorable conditions for turf growth. Higher thatch depth was found with Korean lawngrass, 34~87% in the USGA system and 16~75% in the mono-layer system when compared with CSG. Among WSG, the Joongji variety was the highest in thatch layer under both the USGA and mono-layer systems. Kentucky bluegrass(KB) was the greatest among CSG, since it is a rhizomatous-type in growth habit, resulting in faster production of organic matter over bunch-type of tall fescue and perennial ryegrass. Proper depth in the thatch layer was known to be beneficial by enhancing the resiliency and wear tolerance of the turf in athletic fields. Thus, KB was considered to be a very excellent turfgrass in terms of turf quality, environmental performance, physical properties and soccer player safety. However, disadvantages such as poor water-holding properties, more inclined to injury from environmental stresses and severe diseases and insect injury were also expected where thatch was excessively accumulated. Therefore, these results demonstrate that more frequent measures for controlling thatch such as vertical mowing, topdressing or coring should be employed for soccer fields with Korean lawngrass and KB over other turfgrasses.

Effect of Animal Organic Soil Amendment on Growth of Korean Lawngrass and Kentucky Bluegrass (동물성 유기질 개량재가 들잔디 및 캔터키 블루그래스 잔디생육에 미치는 효과)

  • Koh, Seuk-Koo;Tae, Hyun-Sook;Ryu, Chang-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • Many soil amendments have been used nowadays to improve physical and chmical condition of turf soil, which might ultimately optimize turfgrass growth in golf courses. This study was carried out to Investigate the effects of new organic soil amendment containing pig excreta 50% and sawdust 50% on growth of zoysiagrass (Zoysia japonica L.) and kentucky bluegrass (Poa pratensis L.) in greenhouse. Three applicable treatments with soil mixtures of 10, 20, and 30% (v/v) animal organic soil amendment (AOSA) with sand, were tested for chemical property, physical property, visual quality and root length of zoysiagrass and Kentucky bluegrass. As results, application of $10{\sim}30%$ AOSA mixtures were proper to grow turfgrass in soil nutrition. Especially, the treatment with 20% AOSA mixtures showed 0.7% in organic matter, which meets to green standard of USGA. Also, 30% AOSA mixtures was 1.1% in organic matter, which might be desirable for zoysiagrass-planted golf courses in Korea. It was turned out that addition of AOSA decreased the hydraulic conductivity in soil physical property Because the sand possess high hydraulic conductivity, it is recommended to combine $10{\sim}30%$ AOSA with sand in order to sustain soil balance. The treatment with $10{\sim}30%$ AOSA noticeably increased visual quality of both zoysiagras and Kentucky bluegrass during 90 days. However, treatments with either 20% or 30% AOSA were effective to develop root length of zoysiagrass but treatments with 20% AOSA were more effective than that of 30% AOSA mixtures to promote root length of Kentucky bluegrass at 60 days. In conclusion, considering all vital factors such as visible quality, root growth, organic matter content, and economical efficiency, was taken, it is recommended that a $20{\sim}30%$ mixture of AOSA with sand is good for the growth of zoysiagrass and 20% mixture for Kentucky bluegrass.

Growth Effect and Nutrient Uptake by Application Interval of Developed Slurry Composting and Biofiltration (DSCB) Liquid Fertilizer on Kentucky Bluegrass (개량 가축분뇨발효액비의 시비주기에 따른 켄터키블루그래스의 생육효과 및 양분흡수)

  • Ham, Suon-Kyu;Kim, Young-Sun
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.362-369
    • /
    • 2014
  • A developed slurry composting and biofiltration (DSCB) liquid fertilizer could be used for eco-friendly turfgrass management in golf course. This study was conducted to evaluate the growth effect of application intervals of DSCB in Kentucky bluegrass based on turf color index, chlorophyll index, clipping yield and uptake and availability of nutrient. Treatments were designed as follows; non-fertilizer (NF), control (CF) and DSCB treatments which were applied a every 15 days (DSCB), every 30 days (2DSCB) and 60 days (4DSCB-1: April, June, August; 4DSCB-2: May, July, September). Turf color indexes of DSCB and 2DSCB were higher than CF, but these chlorophyll indexes similar to CF. The clipping yield and uptake and availability rate of nitrogen and potassium in turfgrass were increased in 2DSCB. These results suggested that application of DSCB improved turf quality and growth by prompting an uptake and availability of nutrients in Kentucky bluegrass and its application interval was 1time per month.

The Effect of Rootzone Mix and Compaction on Nitrogen Leaching in Kentucky bluegrass (토양의 종류와 답압이 켄터키블루그래스 토양층에서 질소용탈에 미치는 영향)

  • Lee, Sang-Kook;Frank, Kevin W.;Crum, James R.
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • Research on nitrate-nitrogen ($NO_3-N$) leaching in turfgrass indicates that in most cases leaching poses minimal risk to the environment. Although there have been many studies investigating $NO_3-N$ leaching, there has been little research to investigate the effect of compaction level and rootzone mix on nitrogen (N) leaching. The research objective is to determine the effect of compaction level and rootzone mix on nitrogen leaching. The four rootzone mixes are 76.0:24.0, 80.8:19.2, 87.0:13.0 and 93.7:6.3 % (sand:soil). The four levels of compaction energies are 1.6, 3.0, 6.1, and 9.1 J $cm^{-2}$. Nitrogen was applied using urea at a rate of 147 kg $ha^{-1}$ split among three applications. Rootzone was packed into a polyvinylchloride pipe with a perforated bottom to facilitate drainage. Rootzone depth was 30 cm over a 5 cm gravel layer. Each column was sodded with Poa pratensis L. Hoagland solution designed for coolseason grasses, minus N, was used to ensure adequate nutrition in the rootzone. Turf grass quality and clipping yield were recorded from each tube at two-week intervals. The clippings were oven-dried at a temperature of $67^{\circ}C$ for 24 h and weighed. At the end of the study, root dry weight was determined by washing and oven-drying samples at $67^{\circ}C$ for 24 h. Leachate solution was collected weekly for analysis. More than 6.1 J $cm^{-2}$ of compaction energy increased possibilities of surface runoff. The compaction energy between 3.0 and 6.1 J $cm^{-2}$ produced more clipping dry weight and less N leaching than 9.1 J $cm^{-2}$.

Effect of Soil Organic Amendment and Water-Absorbing Polymer on Growth Characteristics in Poa pratensis L. (Poa pratensis L. 에서 유기질 토양개량재 및 수분 중합체가 잔디생육에 미치는 효과)

  • Kim, Kyoung-Nam
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.317-330
    • /
    • 2009
  • Research was initiated to investigate germination vigor, number of leaves, plant height and turfgrass density. A total of 18 treatment combinations were used in the study. Treatments were made of soil organic amendment(SOA), sand, and water-absorbing polymer. Germination vigor, leaf number, plant height and turfgrass density were evaluated in Kentucky bluegrass(KB) grown under greenhouse conditions. Significant differences were observed in germination vigor, leaf number, plant height and turfgrass density among 18 mixtures of SOA and polymer. Highest germination rate was associated with mixture of SOA 20% + sand 80% + polymer 0%, resulting in 56.3% for KB. Number of leaves at 60 DAS(days after seeding) were greater with KB over PR, while plant height higher with PR over KB. Leaf number increased with SOA, being SOA 20% > SOA 100% > SOA 10% and with polymer from 0 to 12%. Plant height was greatest with SOA 20% and lowest with SOA 100%. Greater density was observed with PR rather than KB due to longer plant height. Turf density was best under SOA 10% and poorest under SOA 100% in KB. A further research would be required for investigating the individual effect of K-SAM, Ca, perlite on the turf growth characteristics.

Effect of Plant Growth Regulators and Medium Supplements on Plant Regeneration of Kentucky Bluegrass (식물생장조절물질과 배지첨가물질이 켄터키 블루그래스의 식물체 재분화에 미치는 영향)

  • Lee Sang-Hoon;Lee Ki-Won;Kim Do-Hyun;Lee Dong-Gi;Won Sung-Hye;Kim Ki-Yong;Lee Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.2
    • /
    • pp.69-76
    • /
    • 2006
  • To optimize tissue culture responses for genetic transformation of Kentucky bluegrass, the effects of culture medium supplements on tissue culture responses were investigated with mature seeds of a cultivar 'Newport' as explant tissues. The optimal concentration of 2,4-D (2.4-dichloro phenoxy acetic acid) for the induction of embryogenic callus from mature seed was 3 mg/L. Plant regeneration frequency was 54% when embryogenic callus was cultured on the regeneration medium supplemented with 1 mg/L 2,4-D and 3 mg/L of BA (6-benzyladenine). Addition of 1 g/L of casein hydrolysate and 500 mg/L of L-proline improved frequencies of embryogenic callus induction and plant regeneration up to 60.8% and 58.3%, respectively. Regenerated plants were grown normally when shoots transplanted to the soil. A rapid and efficient plant regeneration system established in this study. We suggest that the results may be useful for molecular breeding of Kentucky bluegrass through genetic transformation.

Blue-green algae as a Potential agent Causing Turf Leaf Disease (잔디 엽병을 유발하는 잠재인자로서의 남조류(Blue-Green algae)에 대한 관찰보고)

  • Park, Dae-Sup;Lee, Hyung-Seok;Hong, Beom-Seok;Choi, Byoung-Man;Cheon, Jae-Chan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2008
  • Recently irregular dark-colored patches were found on the Kentucky teeing ground in a golf course in Gyunggi providence. Interestingly, blue-green algae from the leaf tissue sample containing black spot-stained symptoms were largely observed through microscopic study. In general, algae present on the upper soil surface or in the upper layer of root zone form dark brown layers of scum or crust, which invoked harmful effects to turf growth such as poor drainage, inhibition of new root development. In this observation, unlike the algae were sometime found in senescing leaves on contacted soil in July and August, the blue-green algae were detected within black spot-stained Kentucky bluegrass leaf tissues including leaf blade, ligule, auriclea as well as leaf sheath. The blue-green algae were also detected on the leaf and stem tissue adjacent to the symptomatic leaf tissues. Two species of blue-green algae, Phomidium and Oscillatoria, were greatly observed. Oscillatoria species was more commonly notified in all samples. In addition, the two species were found on a putting green showing yellow spot disease at another golf course in Gyunggi providence. The data from chemical control assay revealed that chemicals such as propiconazole, iprodione, and azoxystrobin decreased blue-green algae population and leaf spots, which finally resulted in enhanced leaf quality. All taken together, we strongly suggested that the disease-like phenomenon by blue-green algae might be very closely mediated with infection/translocation process in relation with turfgrass. It indicates that blue-green algae in turf management may play an adverse role as a secondary barrier as well as a pathogenic agent. This report may be helpful for superintendents to recognize and understand the fact that algae control should be provided more cautiously and seriously than we did previously in upcoming golf course management.

Plant Regeneration from Seed-derived Callus in Kentucky Bluegrass(Poa pratensis L.) (켄터키 블루그래스의 종자유래의 캘러스로부터 식물체 재분화)

  • Yoon Ho-Sung;Lee Myunghee;Bae Eunkyung;Lee Hyoshin;Jo Jinki
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.3
    • /
    • pp.265-270
    • /
    • 2004
  • Plant regeneration from seed-derived callus of Kentucky bluegrass(Poa pratensis L. cv. Kenblue) was investigated. Callus induced on the medium supplemented with 2 mg/L 2,4-D and 0.2 mg/L BAP showed highest frequency of plant regeneration on the regeneration medium supplemented with 1 mg/L NAA and 5 mg/L kinetin. Callus induced in the dark condition showed higher regenerability than that induced in the dim light. MS medium was better than N6 and B5 medium in enhancing plant regeneration. Maltose was superior to sucrose in plant regeneration as carbon source in the medium.

Effects of Chitosan on the Growth Responses of Kentucky Bluegrass (Poa pratensis L.) (키토산이 캔터키 블루그래스(Poa pratensis L.) 생장에 미치는 효과)

  • Yoon, Ok-Soon;Kim, Kwang-Sik
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.163-175
    • /
    • 2007
  • This study was initiated to investigate the effect of chitosan on Kentucky bluegrass growth. Chitosan was applied rates of 300, 500, and 800 times dilution at ten-day intervals after transplanting. We observed such growth characteristics asleaf length, root length, numbers of leaves, fresh weight and dry weight, and chlorophyll content. Treatment of 300 X diluted chitosan resulted in the longest leaf length of 26.2cm comparing with the 17.1cm average leaf length of control. Leaf numbers were 21.4 and 31.7 for the control and the 500 X dilution treatment. The root length in control was 16.8cm while the treatment of 500 X diluted chitosan increased root length to 27.4cm. Chlorophyll content resulted 19.9mg/$100cm^2$ for the control and 25.5mg/$100cm^2$ for the treatment of 300 X diluted chitosan. In general, we found that the treatment of 500 X diluted chitosan resulted higher leaf number, chlorophyll content, fresh and dry weight.

Chemical Control of Bentgrass in Kentucky Bluegrass (켄터키 블루그래스에서 벤트그래스의 화학적 방제)

  • 김용선;이상재
    • Asian Journal of Turfgrass Science
    • /
    • v.14 no.1
    • /
    • pp.251-256
    • /
    • 2000
  • The purpose of this study is to select the appropriate herbicide, which is needed to control the bentgrass in kentucky bluegrass(Poa pratensis) fairway effectively. The best control of bentgrass was observed at /$0.3mL\m^2$ of dithiopyr applied on Kentucky bluegrass. A field experiment was conducted to determine the priming effects on seed germination of Kentucky bluegrass. Ground covering rates by turfgrass were investigated under field conditions for 70 treatments by thirty days after treatment. The solid matrix priming(SMP) treatments on Kentucky bluegrass reduced the number of days requited for emergence and improved final cover ratings. Primed seeds of Kentucky bluegrass (incubated for five days at $20^{\circ}C$) resulted in most rapid germination and covering rate.

  • PDF