• Title/Summary/Keyword: 케이슨식

Search Result 86, Processing Time 0.02 seconds

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

Analysis on Wave Pressure Reduction due to a Slit Capping (슬릿상부공에 의한 파력 감소 분석)

  • Shin, Dong-Min;Ha, Tae-Min;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.108.2-108.2
    • /
    • 2010
  • 최근 지역어민 또는 관광객들이 친수공간으로 이용할 수 있는 경사식 상부공의 시공이 많아지고 있다. 경사식 상부공은 수평파력을 저감하는 동시에 사면벽에 작용하는 파력을 제체의 안정에 이용할 수 있다. 그러나 직립식 상부공과 비교하여 전달파고가 커지는 문제점을 가지고 있다. 본 연구에서는 상부공에 슬릿을 주어 슬릿 유무에 따른 파력 감소에 대한 수치모의를 실시하였다. 수치모의에는 범용성이 높은 단면 2차원 해석모델인 수치파동수로(CADMAS-SURF)를 사용하였고, 입사파랑으로는 규칙파를 조파하였으며, 전면불투과벽, 슬릿부, 유수실 바닥, 유수실 후벽에서 파력을 측정하였다. 수치모의 결과 상부공에 슬릿이 있는 경우 뚜렷한 파력 감소 효과를 보였으며, 파력감소 효과로 인하여 케이슨의 중량을 줄일 수 있어 공사비 절감 효과도 기대할 수 있었다.

  • PDF

Proposal of Rotating Stability Assessment Formula for an Interlocking Caisson Breakwater Subjected to Wave Forces (파랑하중에 대한 인터로킹 케이슨 방파제의 회전 안정성 평가식 제안)

  • Park, Woo-Sun;Won, Deokhee;Seo, Jihye;Lee, Byeong Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • The rotational stability of an interlocking caisson breakwater was studied. Using the analytical solution for the linear wave incident to the infinite breakwater, the phase difference effect of wave pressures in the direction of the breakwater baseline is considered, and Goda's wave pressure formula in the design code is adopted to consider the nonlinearity of the design wave. The rotational safety factor of the breakwater was defined as the ratio of the rotational frictional resistance moment due to caisson's own weight and the acting rotational moment due to the horizontal and vertical wave forces. An analytical solution for the rotational center point location and the minimum safety factor is presented. Stability assessment formula were proposed to be applicable to all design wave conditions used in current port and harbor structure design such as regular waves, irregular waves and multi-directional irregular waves.

Reliability Analysis of Caisson Type Quaywall (안벽구조물의 신뢰성 해석)

  • Yoon, Gil-Lim;Kim, Dong-Hywan;Kim, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.498-509
    • /
    • 2008
  • Reliability analyses of Level I, II and III for bearing capacity, overturning and sliding of quaywall are carried out to investigate their safety levels depending upon its failure modes, and sensitivity analyses of each design variable are performed to find their effects on safety levels of quaywall. Reliability indices was 1.416 for both level II and III for case study I, and with 2.201 and 1.880, respectively, for the case study II at the critical loading conditions. Thus we were able to know that Level II (FORM) approach is good enough to use in practical design. Generally, it was found that probabilities of failure of quaywall were higher for sliding and bearing capacity failure modes and lower for overturning failure mode. From sensitivity analyses, the most influential design variables to reliability index of quaywall were coefficient of friction, residual water pressure and resistance moment for the sliding, overturning and bearing capacity failure modes, respectively. Especially, the sensitivity of reliability index due to inertial force and dynamic water pressures, which include a large COV when earthquake occurs, did not change greatly.

Proposal of Sliding Stability Assessment Formulas for an Interlocking Caisson Breakwater under Wave Forces (파랑하중에 대한 인터로킹 케이슨 방파제의 미끌림 안정성 평가식 제안)

  • Park, Woo-Sun;Won, Deokhee;Seo, Jihye
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Recently, the possibility of abnormal waves of which height is greater than design wave height have been increased due to the climate change, and therefore it has been urgent to secure the stability for harbor structures. As a countermeasure for improving the stability of conventional caisson breakwaters, a method has been proposed in which adjacent caissons are interlocked with each other to consecutively resist the abnormal wave forces. In order to reflect this research trend, the reduction effect of the maximum wave force resulted from introducing a long caisson has been presented in the revision to the design criteria for ports and fishing harbors and commentary. However, no method has been proposed to evaluate the stability of interlocking caisson breakwater. In this study, we consider the effect of the phase difference of the oblique incidence of the wave based on the linear wave theory and apply the Goda pressure formula for considering design wave pressure distribution in the vertical direction. Sliding stability assessment formula of an interlocking caisson breakwater is proposed for regular, irregular, and multi-directional irregular wave conditions.

Damage monitoring scheme of caisson-type breakwaters (Caisson식 방파제의 손상 모니터링 기법)

  • 박재형;이병준;이용환;김주영;김정태
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.151-156
    • /
    • 2004
  • 최근 국내외에서 국제무역 물량의 증대에 따라 대규모 항만 건설 공사가 진행되고 있으며, 이에 경제성, 시공성이 뛰어난 Caisson 형식의 구조물이 많이 사용되어지고 있다. 특히 항만 및 어항의 외곽시설인 방파제는 계류선박의 안전과 하역 및 적화를 용이하게 하는 중요한 구조물이다. 따라서, 본 연구에서는 Caisson식 방파제에 태풍, 충격력과 같은 몇 가지 외력 조건에 대하여 구조 해석을 실시하여 손상메커니즘을 분석하였다 이러한 손상 메커니즘에 따라 손상을 인위적으로 발생시켜 손상 위치 탐색을 수행하였다.

  • PDF

Influence of Wave Chamber Slab on Wave Pressure on First and Second Wall of Perforated Caisson Breakwater (유수실 상부 덮개가 유공 케이슨 방파제의 전면벽 및 후면벽 파압에 미치는 영향)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Oh, Young-Min;Jang, Se-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2317-2328
    • /
    • 2013
  • In this study, the effect of wave chamber slab on wave pressure along the first and second wall of the perforated caisson breakwater was investigated by performing physical experiment. The experiment was performed without and with the wave chamber slab of the perforated caisson by varying the front wall porosity. The discrepancy in magnitudes of the measured wave pressure along the both walls of the perforated caisson was apparent according to the existence of the wave chamber slab as significantly greater pressures were acquired for all the test cases when the wave chamber was closed upward by the slab. As a result, the magnitudes of the total wave force calculated by integration of the measured wave pressure also were much larger for the caisson breakwater having the wave chamber slab, exceeding the value based on the well known Takahashi's formula (Takahashi and Shimosako, 1994). With respect to the porosity of the front wall, meanwhile, higher pressures were obtained with a larger porosity, at both the first and second wall of the breakwater.

Experimental Modal Analysis for Damage Identification in Foundation-Structure Interface of Caisson-type Breakwater (케이슨식 방파제 지반-구조 경계부 손상식별을 위한 실험적 모드분석)

  • Lee, So-Young;Lee, So-Ra;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • This paper presents an experimental modal analysis of a caisson-type breakwater to produce basic information for the structural health assessment of a caisson structure. To achieve the objective, the following approaches are implemented. First, modal analysis methods are selected to examine the modal characteristics of a caisson structure. Second, experimental modal analyses are performed using finite element analyses and lab-scale model tests. Third, damage scenarios that include several damage levels in a foundation-structure interface are designed. Finally, the effects of damage on the modal characteristics are analyzed for the purpose of utilizing them for damage identification.

A Case Study of Caisson Typed Bridge-Foundation Fabrication and Installation in Ul-san Newport Breakwater Project (케이슨식 교량기초 제작 및 거치 시공사례 -울산 신항 방파제현장 시공 사례를 중심으로-)

  • JANG BYUNG-SOO;SIN SUNG-GWEN;KIM DUCK-HO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.45-50
    • /
    • 2004
  • The method of caisson typed bridge-foundation fabrication and installation applied in Ul-san newport breakwater project is throughly carried out to compact QRR mound vibro-hammer step by step to minimize settlement through stability check. Floating Dock was mobilized for caisson fabrication due to limited site area. fabricated caisson on the Floating Dock was towed to the deeper area of 8m water depth to be launched, and Floating Crane assisted launching and installation work of the caisson. finally water filling was done followed by surveying work to permanent installation.

  • PDF

Evaluation of Empirical Porous-Media Parameters for Numerical Simulation of Wave Pressure on Caisson Breakwater Armored with Tetrapods (테트라포드 피복 케이슨 방파제 파압 수치모의를 위한 투수층 경험계수 산정)

  • Lee, Geun Se;Oh, Sang-Ho;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.344-350
    • /
    • 2019
  • In this study, waves2Foam implemented in OpenFOAM is used to simulate numerically the wave pressure on a verical caisson under the condition of with and without the placement of Tetrapods in front of the caisson. The comparisons of the numerical results and the experimental data show fairly good agreement between them. Based on this, it is possible to suggest an optimal combination of coefficients for an empirical formula to represent the protective TTP layer as porous media.