• Title/Summary/Keyword: 케이블

Search Result 3,044, Processing Time 0.029 seconds

Dispersion Distributed Fiber Optic Cable for Large-Capacity DWDM System (대용량 DWDM 시스템을 위한 분산 분포 광케이블)

  • Park, Euy-Don;Lee, Dong-Uk;Park, Hae-Young;Kim, Dae-Won;Chung, Yun-C;Son, Hyun;Cho, Yung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.10B
    • /
    • pp.1343-1352
    • /
    • 2001
  • DWDM 전송 시스템에서 전송 용량 증대를 위하여 bit rate를 고속화하고 채널 간격을 줄이기 위해서는 전송로로 사용되는 광케이블의 분산특성이 상반되는 값을 갖도록 요구된다. 즉, 분산으로 인한 신호 왜곡을 줄이기 위해서는 광케이블의 분산이 작아야 하고, 비선형 현상을 억제하기 위해서는 분산이 커야 한다. 이러한 두 가지 상반된 분산 penalty를 동시에 해결하기 위한 방안으로 양과 음의 분산 값이 이산적으로 분포된 광섬유 케이블을 최초로 설계 및 제작하였다. 이러한 분산 분포 케이블을 위해 일반 단일 모드 광섬유(SMF)와 대응되는 음분산 값을 갖는 새로운 광섬유(NDF)를 설계 및 제조한 후, SMF의 +17 ps/km/nm 및 NDF의 -15 ps/km/nm의 분산영역이 6km의 케이블 내에 분포되도록 케이블을 제작하였다. 새롭게 개발된 케이블의 분산 값을 국지적으로는 높은 값을 가지면서도 전체적으로는 1.0 ps/km/nm의 평균 분산 값으로 NZSDF 대비 30% 이하를 가질 수 있음을 확인하였다. 또한, 제안된 케이블은 SMF 케이블과 동일한 케이블 시공 운용 환경에서도 정합함을 확인하였다.

  • PDF

Tensile Strength on Connection Socket of Cables (케이블 연결 소켓의 인장강도)

  • Park, Kang-Geun;Lee, Jang-Bok;Ha, Chae-Won;Kim, Jae-Bong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.37-42
    • /
    • 2008
  • Cable member in structure is tension systems in which the load carrying members transmit loads to support system by tensile stress with no compression or flexure allowed. Cable system have been widely used large span structure roof, air-supported structure, prestressed membrane, cable network roof, suspension structures, guyed tower, ocean platforms, suspension bridges. Cable member can transmit loads by the edge connected system such as socket, swaging, mechanical splice sleave, clip, wedge, loop splice etc. This study will shown an experimental results on the strength of connection socket of cables. In the results of experiment, most of cable connection specimen occurred the failure at the connection socket part before the cable arrived at tensile failure load.

  • PDF

Construction of Roof Structure for Pusan Main Stadium (부산종합운동장 주경기장 지붕구조물의 시공)

  • Lee Ju-Young;Ryu Sang-Hyon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.228-231
    • /
    • 2001
  • Construction of roof structure, cable suspended structure, for Pusan main stadium is adapted a lifting method that is VSL lifting system. 5 precesses are practiced for erection of the roof structure including the first lifting process for erection of upper cables and the second lifting process for erection of lower cables. Since all cables of this roof structure with two open speller sockets are determined their length, some cable were wrong length, the roof structure would be unstable. But At complete of erection for the roof structure each cab3e is attained to theoretical tension force with average $4\%$ errors.

  • PDF

Dynamic Non-Linear Analysis of Ocean Cables Subjected to Earthquakes (지진력을 받는 해양케이블의 동적 비선형해석)

  • 김남일;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.77-86
    • /
    • 1999
  • In the previous $paper^{(1),(2)}$, a geometrically non-linear finite element formulation of spatial cables subjected to self-weights and support motions was presented using multiple noded cable elements and how to determine the initial equililbrium state of cables was addressed. In this paper, in order to perform dynamic non-linear analysis of ocean cables subjected to support motions and earthquakes, a numerical method to calculate Morison forces and incorporate effects of earthquake motions is presented based on the Newmark method. Challenging example problems are presented in order to investigate dynamic non-linear behaviors of ocean cables subjected to support motions and earthquake loadings.

  • PDF

Static Non-linear Finite Element Analysis of Spatial Cable Networks (3차원 케이블망의 초기평형상태 결정 및 정적 비선형 유한요소해석)

  • 김문영;김남일;안상섭
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.179-190
    • /
    • 1998
  • A geometrically nonlinear finite element formulation of spatial cable networks is presented using two cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static nonlinear behaviors of cable nets.

  • PDF

Nonlinear Effects on the Cable Dynamic Behaviour (케이블의 동적거동에 미치는 비선형 영향)

  • Hyun-Kyoung,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.11-16
    • /
    • 1990
  • The effects on the dynamic behaviour of the geometric nonlinearity and large dynamic tensile forces occurring in hostile sea environments must be investigated for assessing extreme tensions and fatigue life expectancy of cable. In this paper, the combined effects on the cable dynamic responses are shown through comparisons between numerical solutions to the cable dynamic equations with geometric nonlinearity and large tensile force terms as well as nonlinear drag term and those to the cable equations with only nonlinear drag term. It is found that, in steady state, the cambined effects increase the maximum dynamic tension and reduce the magnitude of the minimum of the dynamic tension at the middle of the cable. This decrease together with the increase of the maximum dynamic tension, cause the average tension to become higher and, therefore, it may deteriorate the cable fatigue life.

  • PDF

Implementation of Cable Drum Scheduling Algorithm for Productivity Enhancement of Power Plant Electrical Installations (발전소 전기설비의 생산성 향상을 위한 케이블 드럼 스케줄링 알고리즘 구현)

  • Lee, Yang-Sun;Park, Ki-Hong;Choi, Hyo-Beom;Oh, Ji-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.770-771
    • /
    • 2015
  • In this paper, we proposed and implemented the automation of cable drum scheduling which is required a considerable construction cost for electrical equipment in power plant. Implemented cable drum scheduling can be reduced the calculation time of cable drum scheduling, and it is possible to minimize the consuming time of cable drum scheduling than conventional methods. Some experiments are conducted to verify the proposed method, and as a result, the automation of cable drum scheduling is well performed, enabling cables can be optimized and scheduled to fit the drum capacity with productivity enhancement of electrical installations.

  • PDF

A Multi-noded Cable Element Considering Sliding Effects (슬라이딩을 허용하는 다절점 케이블요소)

  • Kim, Moon Young;Lee, Jun Seok;Han, Man Yop;Kim, Sung Bo;Kim, Nak Kyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.449-457
    • /
    • 2005
  • A multi-noded cable element allowing sliding at its nodes without frictions was introduced in this paper, and its elastic stiffness matrix was derived. A two-node truss element was briefly summarized and extended to multi-node, cable-truss elements that keep their tension constant but are connected without frictions through several nodes. The element elastic stiffness matrix of the multi-node,cable-truss elements was consistently derived. The steel wales pre-stressed externally in the IPS system were chosen as numerical examples and analyzed under various loading conditions. The cable tensions calculated using the present element were compared with the results of the flexibility method and those using the two-node truss element, respectively.

A Study on the Risk and Countermeasures of Hacking Cable

  • Hea-Jun Kim;Young-Bok Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.75-81
    • /
    • 2023
  • Since the introduction of smartphones, the introduction of charging cable infrastructure that can be used for public use is underway. Thanks to this, people use public cables comfortably without doubt, but most people are not aware of the dangers of public cables. These public cables can lead to infringement accidents such as personal information exposure due to the development of hacking cables, and in the worst case, hackers can take control of smartphones and laptops. This study analyzed the operating principles and attack principles of hacking cables that seem like these general charging cables, but contain malicious scripts or hardware inside. In addition, physical and logical countermeasures were considered based on the analysis.

Determination of Initial Tension and Reference Length of Cables of Cable-Stayed Bridges (사장교의 케이블 초기장력 및 기준길이 결정에 관한 연구)

  • Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.137-146
    • /
    • 2005
  • This study presents the shape iteration method and the updated Lagrangian methods to calculate the initial tension and the reference length of cables of cable-stayed bridges. The girders and towers of cable-stayed bridge are modelled as 3-dimensional frame elements and the cable as nonlinear truss element or Ernst's cable element. Compared with the initial tensions of cables by finite element method in this study and by trial-and error method in practices, the tensions by the former are shown to be a little less than the those by the latter. The reference lengths of cables by Ernst's cable elements are almost consistent with those of cables by nonlinear truss elements. And the reference length of cables in this study are almost consistent with the arc length of beam with the same initial tension. Therefore the reference lengths of cables in cable-stayed bridges are shown to be obtained simply by the theory of beam with the initial tension calculated in this study.