• 제목/요약/키워드: 컴퓨팅 시스템

검색결과 3,815건 처리시간 0.03초

4차 산업혁명시대 가정과교육의 역할 (The Role of Home Economics Education in the Fourth Industrial Revolution)

  • 이은희
    • 한국가정과교육학회지
    • /
    • 제31권4호
    • /
    • pp.149-161
    • /
    • 2019
  • 현재 우리는 지금까지 아무도 예측하지 못할 정도의 인공지능의 발달과 빠른 기술혁신에 따른 4차 산업혁명시대로의 변화시점에 있다. 본 연구는 '4차 산업혁명시대로의 변화에 따라 가정과교육은 어떤 역할을 수행해야 하는가?'의 문제의식에서 출발하였으며, 구체적으로 4차 산업혁명시대의 특징과 교육의 방향에 따른 가정과교육의 역할에 초점을 맞추어 연구를 진행하였다. 4차 산업혁명의 특징은 인공지능(AI), 클라우드 컴퓨팅(Cloud Computing), 사물인터넷(IoT), 빅 데이터(Big Data), O2O(Online to Offline) 등으로, 일상생활뿐만 아니라 사회체제와 과학기술, 그리고 직업의 구조에 급격한 변화를 가져올 것이다. 그 과정에서 비인간화되어가는 현상, 로봇과 인공지능의 발전에 따른 인간의 도덕성과 윤리적인 면에 문제를 줄 수 있기 때문에, 4차 산업혁명 시대 교육의 방향은 미래 공동체를 위해 함께하는 인성과 시민의식을 갖춘 미래 인재를 양성하는 방향으로 총체적인 변화가 모색되어져야 한다. 또한 초지능, 초연결 사회로의 변화를 가져올 4차 산업혁명이 교육에 주는 시사점은 인간이 인간으로서의 가치를 스스로 내면화하도록 교육의 역할이 강조되어져야 한다는 것이다. 인성교육은 교육과정의 통합 속에서 개념이 정립되고 보편타당한 내면화된 의식으로 자리 잡아야 하며 구체적인 실천적 전략들이 마련되어져야 한다. 결론적으로 4차 산업혁명시대 가정과교육의 역할은 다음과 같다. 첫째, 4차 산업혁명시대 가정과교육은 인간의 본성인 인성교육의 중추적 역할을 담당하여야 한다. 인성교육을 주도적으로 담당해야 한다는 것이다. 또한 4차 산업혁명시대 가정과교육은 인간의 다양한 삶의 본질적인 개선에 선도적 역할을 담당하여야 한다. 4차 산업혁명은 인간의 정신적, 육체적 활동뿐만 아니라, 인간의 정체성도 바뀌어 갈 것이다. 3차 산업혁명 이후의 사회에서는 산재해 있는 지식을 얼마나 신속하고 정확하게 습득할 수 있느냐가 중요했다면 4차 산업혁명의 지능정보화사회에서는 빠른 변화 속에서 인간의 본성을 지키기 위해 지식을 어떻게 활용할 것인지를 배우는 것이 요구된다. 이렇듯 4차 산업혁명은 우리 삶을 형성하는 시스템에 영향을 끼침으로써 가족과 조직, 공동체를 긍정적으로 이끌어갈 수 있는 방향성을 모색하게 되는데 가정과교육이 이러한 역할을 선도적으로 담당해야 한다.

기계식 쿨링 기법에 따른 고성능 멀티코어 프로세서의 냉각 효율성 분석 (Analysis on the Cooling Efficiency of High-Performance Multicore Processors according to Cooling Methods)

  • 강승구;최홍준;안진우;박재형;김종면;김철홍
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권7호
    • /
    • pp.1-11
    • /
    • 2011
  • 사용자들의 높은 요구 사항을 만족시키는 컴퓨팅 시스템을 개발하기 위해 프로세서의 성능을 향상시키기 위한 연구는 지속적으로 진행되어 왔다. 공정 기술 발달을 비롯한 다양한 기술 발전을 통하여 프로세서의 성능은 비약적으로 발전하였으나 그 이면에는 새로운 문제들이 발생하게 되었다. 그 중에서, 최근 들어 주된 문제점 중 하나로 인식되고 있는 열섬 현상은 칩의 신뢰성에 심각한 영향을 미치기 때문에 프로세서 설계 시 성능, 전력 효율성과 함께 반드시 고려되어야 한다. 과거에는 기계적인 냉각 기법으로 프로세서의 온도를 효과적으로 제어할 수 있었지만, 최근에는 프로세서의 성능이 높아져 발생되는 온도가 높아 냉각 비용이 급속히 증가하고 있다. 이로 인해, 최근의 온도 제어 연구는 기계적인 냉각 기법보다는 구조적 기법을 통한 온도 제어에 더욱 집중되는 추세를 보이고 있다. 하지만, 구조적 기법을 통해 온도를 제어하는 방안은 프로세서의 온도를 낮추는 데에는 효율적이지만 이를 위해 성능을 희생한다는 단점이 존재한다. 따라서, 기계적 냉각 기법을 통해 프로세서의 온도를 효율적으로 제어할 수 있다면, 성능 저하가 발생되는 구조적 기법을 통한 온도 제어기법의 사용 빈도가 줄어 그 만큼 성능이 향상될 수 있을 것으로 기대된다. 본 논문에서는 고성능 멀티코어 프로세서에서 발생하는 온도를 기계적인 냉각 기법이 얼마나 효율적으로 제어할 수 있는지를 상세하게 분석해 보고자 한다. 공랭식 냉각기와 수랭식 냉각기를 이용하여 다양한 실험을 수행한 결과, 공랭식 냉각기와 비교하여 수랭식 냉각기가 온도를 효과적으로 제어하는 반면에 전력 소모가 더 많음을 확인할 수 있다. 특히, 1W의 전력을 통해 낮출 수 있는 온도를 분석해 보면 공랭식에 비해서 수랭식이 더 효율적임을 알 수 있으며, 수랭식 냉각기의 경우에는 냉각 단계가 냉각 효율은 오히려 감소하게 됨을 확인할 수 있다. 실험 결과를 바탕으로 온도에 따라 적절하게 기계적 냉각 기법을 활용한다면 프로세서의 온도를 더욱 효과적으로 제어할 수 있을 것으로 기대된다.

도메인 특수성이 도메인 특화 사전학습 언어모델의 성능에 미치는 영향 (The Effect of Domain Specificity on the Performance of Domain-Specific Pre-Trained Language Models)

  • 한민아;김윤하;김남규
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.251-273
    • /
    • 2022
  • 최근 텍스트 분석을 딥러닝에 적용한 연구가 꾸준히 이어지고 있으며, 특히 대용량의 데이터 셋을 학습한 사전학습 언어모델을 통해 단어의 의미를 파악하여 요약, 감정 분류 등의 태스크를 수행하려는 연구가 활발히 이루어지고 있다. 하지만 기존 사전학습 언어모델이 특정 도메인을 잘 이해하지 못한다는 한계를 나타냄에 따라, 최근 특정 도메인에 특화된 언어모델을 만들고자 하는 방향으로 연구의 흐름이 옮겨가고 있는 추세이다. 도메인 특화 추가 사전학습 언어모델은 특정 도메인의 지식을 모델이 더 잘 이해할 수 있게 하여, 해당 분야의 다양한 태스크에서 성능 향상을 가져왔다. 하지만 도메인 특화 추가 사전학습은 해당 도메인의 말뭉치 데이터를 확보하기 위해 많은 비용이 소요될 뿐 아니라, 고성능 컴퓨팅 자원과 개발 인력 등의 측면에서도 많은 비용과 시간이 투입되어야 한다는 부담이 있다. 아울러 일부 도메인에서 추가 사전학습 후의 성능 개선이 미미하다는 사례가 보고됨에 따라, 성능 개선 여부가 확실하지 않은 상태에서 도메인 특화 추가 사전학습 모델의 개발에 막대한 비용을 투입해야 하는지 여부에 대해 판단이 어려운 상황이다. 이러한 상황에도 불구하고 최근 각 도메인의 성능 개선 자체에 초점을 둔 추가 사전학습 연구는 다양한 분야에서 수행되고 있지만, 추가 사전학습을 통한 성능 개선에 영향을 미치는 도메인의 특성을 규명하기 위한 연구는 거의 이루어지지 않고 있다. 본 논문에서는 이러한 한계를 극복하기 위해, 실제로 추가 사전학습을 수행하기 전에 추가 사전학습을 통한 해당 도메인의 성능 개선 정도를 선제적으로 확인할 수 있는 방안을 제시한다. 구체적으로 3개의 도메인을 분석 대상 도메인으로 선정한 후, 각 도메인에서의 추가 사전학습을 통한 분류 정확도 상승 폭을 측정한다. 또한 각 도메인에서 사용된 주요 단어들의 정규화된 빈도를 기반으로 해당 도메인의 특수성을 측정하는 지표를 새롭게 개발하여 제시한다. 사전학습 언어모델과 3개 도메인의 도메인 특화 사전학습 언어모델을 사용한 분류 태스크 실험을 통해, 도메인 특수성 지표가 높을수록 추가 사전학습을 통한 성능 개선 폭이 높음을 확인하였다.

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.

전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법 (Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification)

  • 바트후 ?바자브;주마벡 알리하노브;팡양;고승현;조근식
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.