• Title/Summary/Keyword: 컴퓨터 CPU

Search Result 439, Processing Time 0.027 seconds

Fast GPU Implementation for the Solution of Tridiagonal Matrix Systems (삼중대각행렬 시스템 풀이의 빠른 GPU 구현)

  • Kim, Yong-Hee;Lee, Sung-Kee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.692-704
    • /
    • 2005
  • With the improvement of computer hardware, GPUs(Graphics Processor Units) have tremendous memory bandwidth and computation power. This leads GPUs to use in general purpose computation. Especially, GPU implementation of compute-intensive physics based simulations is actively studied. In the solution of differential equations which are base of physics simulations, tridiagonal matrix systems occur repeatedly by finite-difference approximation. From the point of view of physics based simulations, fast solution of tridiagonal matrix system is important research field. We propose a fast GPU implementation for the solution of tridiagonal matrix systems. In this paper, we implement the cyclic reduction(also known as odd-even reduction) algorithm which is a popular choice for vector processors. We obtained a considerable performance improvement for solving tridiagonal matrix systems over Thomas method and conjugate gradient method. Thomas method is well known as a method for solving tridiagonal matrix systems on CPU and conjugate gradient method has shown good results on GPU. We experimented our proposed method by applying it to heat conduction, advection-diffusion, and shallow water simulations. The results of these simulations have shown a remarkable performance of over 35 frame-per-second on the 1024x1024 grid.

Optimal Sequence Alignment Algorithm Using Space Division Technique (공간 분할 방법을 이용한 최적 서열정렬 알고리즘)

  • Ahn, Heui-Kook;Roh, Hi-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.5
    • /
    • pp.397-406
    • /
    • 2007
  • The problem of finding an optimal alignment between sequence A and B can be solved by dynamic programming algorithm(DPA) efficiently. But, if the length of string was longer, the problem might not be solvable because it requires O(m*n) time and space complexity.(where, $m={\mid}A{\mid},\;n={\mid}B{\mid}$) For space, Hirschberg developed a linear space and quadratic time algorithm, so computer memory was no longer a limiting factor for long sequences. As computers's processor and memory become faster and larger, a method is needed to speed processing up, although which uses more space. For this purpose, we present an algorithm which will solve the problem in quadratic time and linear space. By using division method, It computes optimal alignment faster than LSA, although requires more memory. We generalized the algorithm about division problem for not being divided into integer and pruned additional space by entry/exit node concept. Through the proofness and experiment, we identified that our algorithm uses d*(m+n) space and a little more (m*n) time faster than LSA.

A Non-consecutive Cloth Draping Simulation Algorithm using Conjugate Harmonic Functions (켤레조화함수를 이용한 비순차적 의류 주름 모사 알고리즘)

  • Kang Moon Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.181-191
    • /
    • 2005
  • This article describes a simplified mathematical model and the relevant numerical algorithm to simulate the draped cloth on virtual human body. The proposed algorithm incorporates an elliptical, or non-consecutive, method to simulate the cloth wrinkles on moving bodies without resorting to the result of the past time-steps of drape simulation. A global-local analysis technique was employed to decompose the drape of cloths into the global deformation and the local wrinkles that will be superposed linearly The global deformation is determined directly by the rotation and the translation of body parts to generate a wrinkle-free yet globally deformed shape of cloth. The local wrinkles are calculated by solving simple elliptical equations based on the orthogonality between conjugate harmonic functions representing the wrinkle amplitude and the direction of wrinkles. The proposed method requires no interpolative time frames even for discontinuous body postures. Standing away from the incremental approach of time integration in conventional methods, the proposed method yields a remarkable reduction of CPU time and an enhanced stability. Also, the transient motion of cloth could be achieved by interpolating between the deformations corresponding to each static posture.

Digital Processing and Acoustic Backscattering Characteristics on the Seafloor Image by Side Scan Sonar (Side Scan Sonar 탐사자료의 영상처리와 해저면 Backscattering 음향특성)

  • 김성렬;유홍룡
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.143-152
    • /
    • 1987
  • The digital data were obtained using Kennedy 9000 magnetic tape deck which was connected to the SMS960 side scan sonar during the field operations. The data of three consecutive survey tracks near Seongsan-po, Cheju were used for the development of this study. The softwares were mainly written in Fortran-77 using VAX 11/780 MINI-COMPUTER (CPU Memory; 4MB). The established mapping system consists of the pretreatment and the digital processing of seafloor image data. The pretreatment was necessary because the raw digital data format of the field magnetic tapes was not compatible to the VAX system. Therefore the raw data were read by the personal computer using the Assembler language and the data format was converted to IBM compatible, and next data were communicated to the VAX system. The digital processing includes geometrical correction for slant range, statistical analysis and cartography of the seafloor image. The sound speed in the water column was assumed 1,500 m/sec for the slant range correction and the moving average method was used for the signal trace smoothing. Histograms and cumulative curves were established for the statistical analysis, that was purposed to classify the backscattering strength from the sea-bottom. The seafloor image was displayed on the color screen of the TEKTRONIX 4113B terminal. According to the brief interpretation of the result image map, rocky and sedimentary bottoms were very well discriminated. Also it was shown that the backscattered acoustic pressurecorrelateswith the grain size and sorting of surface sediments.

  • PDF

State of Information Technology and Its Application in Agricultural Meteorology (농업기상활용 정보기술 현황)

  • Byong-Lyol Lee;Dong-Il Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.118-126
    • /
    • 2004
  • Grid is a new Information Technology (IT) concept of "super Internet" for high-performance computing: worldwide collections of high-end resources such as supercomputers, storage, advanced instruments and immerse environments. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, real-time data sources and instruments, and human collaborators. The term "the Grid" was coined in the mid1990s to denote a proposed distributed computing infrastructure for advanced science and engineering. The term computational Grids refers to infrastructures aimed at allowing users to access and/or aggregate potentially large numbers of powerful and sophisticated resources. More formally, Grids are defined as infrastructure allowing flexible, secure, and coordinated resource sharing among dynamic collections of individuals, institutions and resources referred to as virtual Organizations. GRID is an emerging IT as a kind of next generation Internet technology which will fit very well with agrometeorological services in the future. I believe that it would contribute to the resource sharing in agrometeorology by providing super computing power, virtual storage, and efficient data exchanges, especially for developing countries that are suffering from the lack of resources for their agmet services at national level. Thus, the establishment of CAgM-GRID based on existing RADMINSII is proposed as a part of FWIS of WMO.part of FWIS of WMO.

Development and Usability of a Cognitive Rehabilitation System Based on a Tangible Object for the Elderly (고령자를 위한 실감객체기반 인지재활 시스템의 개발과 사용성 연구)

  • Park, Sangmi;Won, Kyung-A;Shin, Yun-Chan;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.8 no.1
    • /
    • pp.51-62
    • /
    • 2019
  • Objective: To develop and verify the usability of a cognitive rehabilitation system with diverse cognitive functional levels based on tangible objects for the elderly population. Methods: A study was conducted to investigate the system's strengths and weaknesses by upgrading it with responses from two groups of 15 patients and 4 occupational therapists. After undergoing three forms of training - regarding executive function, memory, and concentration for a total of 20-30 min, the participants were asked to answer a structured questionnaire about contents of the three forms of training, hardware including the tablet PC functioning as a CPU and display media and tangible objects, and satisfaction of experiential usage of the system. Results: Both groups responded that the most interesting training area was executive function while the least interesting was concentration. Six participants reported that the size of the screen of the tablet PC was inappropriate, and five responded that the size of the tool was inappropriate. All therapists and 40% of the patients responded that they were satisfied with this system. Conclusion: This system's features include easy manipulation of tangible tools for performing training tasks, easy selection of and training in cognitive areas based on users' needs, and automatic adjustment of difficulty level based on users' performance. The training environment was designed to be similar to the natural environment by using tangible objects in both hands as input devices for the system, and the system was considered as an alternative to the lack of community cognitive rehabilitation specialists.

Improving application startup time by automatic profiling (Automatic Usage Profiling을 통한 초기 앱 실행 속도 개선 방법)

  • Chae, Hyangseok;Baik, Jongmoon
    • Journal of Software Engineering Society
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Google released an initial version of Android that runs Dex(Dalvik Executable) through the Dalvik Runtime. Since Dalvik Runtime is based on interpreter, JIT(Just-in-time) compilation has been applied to improve performance. After Lollipop(Android 5.0) Dalvik Runtime has replaced with ART Runtime which support AOT (Ahead-of-time) compilation of Dex into Native Code. The late st Android has a problem that the application execution speed is slow until the AOT compilation is completed according to the actual usage record after the installation of the app. To improve the problem we have investigate the characteristics of profile that can improve the execution speed of the application and generate the profile automatically. Finally we propose a method that can optimize the application at install time. With the proposed method we can optimize selectively at install time and can help improving the execution speed of the app from the initial execution.

Automated Satellite Image Co-Registration using Pre-Qualified Area Matching and Studentized Outlier Detection (사전검수영역기반정합법과 't-분포 과대오차검출법'을 이용한 위성영상의 '자동 영상좌표 상호등록')

  • Kim, Jong Hong;Heo, Joon;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.687-693
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene, one of which represents a reference image, while the other is geometrically transformed to the one. In order to improve efficiency and effectiveness of the co-registration approach, the author proposed a pre-qualified area matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with cross correlation coefficient. For refining matching points, outlier detection using studentized residual was used and iteratively removes outliers at the level of three standard deviation. Throughout the pre-qualification and the refining processes, the computation time was significantly improved and the registration accuracy is enhanced. A prototype of the proposed algorithm was implemented and the performance test of 3 Landsat images of Korea. showed: (1) average RMSE error of the approach was 0.435 pixel; (2) the average number of matching points was over 25,573; (3) the average processing time was 4.2 min per image with a regular workstation equipped with a 3 GHz Intel Pentium 4 CPU and 1 Gbytes Ram. The proposed approach achieved robustness, full automation, and time efficiency.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.