• 제목/요약/키워드: 컴퓨터환경

검색결과 8,169건 처리시간 0.042초

코로나19 상황에서 소방공무원의 비대면 실시간 교육에 관한 의식조사연구 (A Study on Survey of Non Face to Face Realtime Education Focused on Firefighter in COVID-19)

  • 박진찬;백민호
    • 한국재난정보학회 논문집
    • /
    • 제17권4호
    • /
    • pp.722-732
    • /
    • 2021
  • 연구목적: 코로나바이러스 감염증-19(COVID) 펜데믹으로 인해 모든 교육기관은 전면 비대면 실시간 교육을 해야하는 상황이 발생하였고 이에 소방공무원에게도 비대면교육을 적용하여 소방교육을 운영하는 것이 요구되었다. 이러한 펜데믹 상황에서 중앙소방학교가 소방공무원에게 실시한 비대면 실시간 교육에 대한 실태조사를 통해 비대면 실시간 교육의 방향을 찾고 개선방안을 제시 하려한다. 연구방법: 소방공무원을 대상으로 '비대면 실시간 원격교육의 질적 향상 및 전문화를 위한 의식조사' 라는 주제로 설문조사를 실시하여 그 결과를 토대로 심층분석을 하였다. 연구결과 및 결론: 첫째, 교수자 혹은 교육운영자는 다양한 프로그램을 활용하여 교육특성에 맞는 원격교육 프로그램을 적극 활용할 필요가 있다. 둘째, 비대면 교육을 위한 전용노트북을 제공하여 모든 학습자들이 교육 참여에 어려움 없는 교육환경을 제공 할 필요가 있다. 셋째, 소방공무원 교육훈련 특성상 장비 활용이 필요한 교육훈련의 경우에는 각 소방서에 교육 장비를 배치하여 비대면 실습교육 장소로 고려해 볼 필요가 있다. 넷째, 실습교육은 이론교육으로 대처하는 것은 만족스러운 교육효과를 기대하기 어렵다. 그렇기에 비대면 실시간 실습교육이 가능한 시설과 프로그램이 개발되어져야한다. 그러한 비대면 실습교육이 가능해지기 전까지는 사회적 거리를 최대한 유지하면서 대면교육을 적절하게 병행하는 것도 고려해볼만 하다. 다섯째, 비대면 교육은컴퓨터 화면의 불빛과 전자파로 인하여 눈의 피로도가 높고 시간이 흐를수록 집중도가 많이 떨어진다는 의견으로 보아 적절한 수업시간과 휴식시간을 통해 학습자의 눈의 피로를 줄이고 집중력을 높일 수 있는 교육시간을 구성해야 할 필요가 있다. 마지막으로 교수자는 일방적인 지식전달을 하는 교육보다는 교수자와 학습자가 상호작용할 수 있는 학습자 참여 중심의 교육을 운영해야할 필요가 있다. 또한 비대면 원격교육 기술적인 문제는 사전시스템 점검을 통해 교육에 차질이 없도록 철저한 준비가 필요한 것으로 생각된다.

한국 특촬물 시리즈에 나타난 과학적 인식 - <지구용사 벡터맨>을 중심으로 (Scientific Awareness appearing in Korean Tokusatsu Series - With a focus on Vectorman: Warriors of the Earth)

  • 박소영
    • 공연문화연구
    • /
    • 제43호
    • /
    • pp.293-322
    • /
    • 2021
  • <지구용사 벡터맨>은 한국 특촬물 시리즈를 대표하는 작품이자 특촬물 시리즈 중 가장 큰 성공을 거둔 작품이다. 이 작품이 등장할 수 있었던 것은 80년대 중반부터 계속된 일본 특촬물의 인기와 로봇 애니메이션의 유행이 있었기 때문이다. 한국의 텔레비전 방송에서는 어린이 프로그램의 고질적인 문제인 수입프로그램의 범람과 거듭된 재방송으로 인해 국산 어린이 프로그램에 대한 필요성이 꾸준히 대두되고 있었다. 그러나 90년대 중반 한국 애니메이션의 인기가 줄어들면서 애니메이션 제작에 대한 부담감 또한 증가할 수밖에 없었다. 그로 인해 <지구용사 벡터맨>은 애니메이션이 아닌 특촬물로 제작되었는데, 이때 특수효과기술을 방송국에서도 사용할 수 있는 환경이 조성되던 시기적 특성과 맞물려 컴퓨터 시각효과가 적극적으로 사용되었다. <지구용사 벡터맨>이라는 새로운 국산 특촬물 시리즈의 등장에 대한 반응은 폭발적이었다. 벡터맨 시리즈는 이제 우주의 과학기술이라는 모호한 단어 대신 DNA 합성, 뇌세포 변이, 특수심리조종장치 등 구체적인 과학적 용어들을 활용해 우주적 존재들의 능력을 설명한다. 비록 그 과정과 원인에 대해서 상세하게 말할 수는 없으나 공상과학이 아닌 구체적 용어들로 정의되는 모습은, 이제 한국사회에 과학적 상상력이 구체적인 형태로 발현되고 있음을 보여 준다. 그리고 벡터맨과 우주인들의 동등한 관계는 지구의 과학 용어로 설명되는 우주의 과학은 지구로 대변되는 한국 과학 기술 발전에 대한 자신감의 표현이기도 하다. 그러나 여성캐릭터들은 과학의 영역으로 진출하지 못하고 여전히 비과학적 존재로 묘사되며 과학적 인식에 대한 한계를 드러낸다.

자연 상태에서의 인간감성 평가를 위한 비접촉식 인덕티브 센싱 기반의 착용형 센서 연구 (A Study on Wearable Emotion Monitoring System Under Natural Conditions Applying Noncontact Type Inductive Sensor)

  • 조현승;양진희;이상엽;이정환;이주현;김훈
    • 감성과학
    • /
    • 제26권3호
    • /
    • pp.149-160
    • /
    • 2023
  • 본 연구에서는 뇌혈류 신호를 측정할 수 있는 시변자계 기반의 비접촉식 직물센서를 설계하여 뇌혈류 신호 검출 및 감성평가의 가능성을 탐색하고자 하였다. 직물센서는 40 denier의 은사를 30합사 한 후 컴퓨터 기계 자수하여 코일형 센서로 구현하였다. 뇌혈류 측정 실험을 위해 코일형 센서를 경동맥 부위에 부착하고, ECG (Electrocardiogram) 전극과 RSP (Respiration) 측정 벨트를 부착 및 착용하도록 하였으며, 동시에 초음파 진단기기를 사용해 도플러 초음파 검사(Doppler Ultrasonography)를 수행하여 혈류 속도를 측정하였다. 피험자에게 Meta Quest 2를 착용시키고, 실험을 위해 조작된 영상 시각 자극을 보여주면서 혈류 신호를 측정한 후 시각 자극에 대한 감성평가 설문지를 작성하도록 하였다. 측정 결과, 도플러 초음파 검사를 통해 측정된 혈류 속도 신호에 변화가 생길 때 직물센서로 측정한 신호도 함께 변화하는 것으로 나타났다. 이를 통해 코일형 직물센서를 이용하여 뇌혈류활동 신호를 측정할 수 있다는 것을 검증하였다. 또한, 감성평가를 위하여 ECG 신호와 PLL 신호(직물센서 신호)에서 추출한 HRV를 계산해서 비교한 결과, 시각 자극으로 인한 교감신경계와 부교감신경계의 활성화에 따른 비율의 변화에 대해서는 직물센서로 측정한 신호와 ECG 신호를 이용해 계산한 값이 비슷한 경향을 보이는 것으로 나타났다. 결론적으로, 본 연구에서 개발된 시변자계 기반의 코일형 직물 센서를 통해 뇌혈류 변화 측정 및 감성 모니터링이 가능할 것으로 사료된다.

주요국 AI 창업기업 정책 분석을 통한 국내 시사점 연구 (A Study on the Implications of Korea Through the Policy Analysis of AI Start-up Companies in Major Countries)

  • 김동진;이성엽
    • 벤처창업연구
    • /
    • 제19권2호
    • /
    • pp.215-235
    • /
    • 2024
  • 인공지능(AI) 기술이 미래 국가 경쟁력을 좌우할 핵심 기술로 인식되면서 주요국의 AI 기술 및 산업 육성 정책 경쟁이 치열해지고 있다. 본 연구는 AI 산업 생태계의 근간인 AI 기업 창업에 대한 주요국의 정책을 분석하여 국내 정책 입안에 시사점을 제시하고자 한다. 조사 분석 대상국은 미국 스탠퍼드대학 HAI연구소에서 발표한 『2023 AI Index』의 신규 투자유치 기업 수 최상위 4개 국가와 EU로 선정하였고, 이들 국가와 국내 정책과 비교하여 전략적 함의를 제시하고자 한다. 미국은 2021년 '국가 AI 이니셔티브법(NAIIA)'을 제정했다. 동 법을 통해 AI 연구개발 분야에서 미국의 지속적인 리더십 보장, 공공 및 민간부문에서 신뢰할 수 있는 AI 시스템 개발, 사회 전반에 걸친 AI 시스템 생태계 구축 및 모든 연방기관에서 진행하는 AI 정책에 대한 DB 관리 및 접근성 강화를 추진하고 있다. 중국은 2021년 개최된 제14차 5개년(2021~2025년) 규획 및 2035년 장기 목표에서 7대 전략적 첨단기술 중 첫 번째로 AI를 명시하고 있으며, 2030년까지 글로벌 AI 1위 강국 도약을 목표로 다양한 정책을 전개하고 있다. 영국은 2021년 자금 지원 프로그램'Future Fund Breakthrough'을 통해 획기적인 연구개발 기업에 투자하고 있으며, 2022년 국가 AI 전략의 실행계획 등 AI 선도국 도약을 위한 국가 전략 마련으로 관련 투자를 확대하고 있다. 이스라엘은 혁신청을 중심으로 스타트업 기업에 대한 기술 투자를 지원하고 있는데, 혁신청은 향후 2년~15년 내 성과를 낼 투자와 신기술에 대한 규제 개혁을 주도하고 있다. EU는 중소기업의 AI 활용 지원을 위해 디지털 혁신 허브 네트워크를 강화하고 InvestEU(유럽전략투자기금)와 AI 투자기금을 조성하고 있다. 국내 도입을 검토할 주요국 정책은 국내 ICT 창업기업들로부터 정책 지원 수요가 높은 것으로 나타난 R&D 지원, 사업화 및 판로·마케팅·해외진출 지원 정책자금 지원 측면을 중심으로 도출하였다. 먼저 R&D 지원과 관련하여 미국의 '국가 AI R&D 전략 계획 2023'과 EU의 'AI 혁신 패키지' 검토를 제안한다. 특히 이들 정책은 국가가 관리하는 고성능슈퍼컴퓨터를 R&D에 활용할 수 있도록 하고 있어 AI 창업기업들이 R&D에 들이는 시간과 비용을 절감하는데 크게 도움을 준다. 다음으로 사업화 및 판로·마케팅·해외진출 지원에서는 미국 중소기업청(SBA)의 'SBIR과 STTR 지침' 중 '연방 및 주 기술(Federal And State Technology, FAST) 파트너십 프로그램'과 국방부와 공조하는 '상용화 준비(Commercialization Readiness Pilot. CRP) 프로그램'에 대한 벤치마킹을 제안한다. 이들 프로그램은 정부가 창업기업의 제품과 서비스 상용화를 지원하고 시장 출시 초기에 공공 부문이 적극적으로 구매하는 것을 골자로 한다. 이는 AI 창업기업의 혁신 제품과 서비스가 초기 시장에 안착하는 것은 물론 국내외 시장으로 진출하는 데 중요한 레퍼런스를 제공한다. 세 번째로 정책자금 지원에서는 영국기업은행(BBB)의 공동 투자 프로그램을 제안한다. 영국기업은행은 고성장 혁신기업 투자에 있어 외국계 국부 펀드의 참여도 적극적으로 유도하고 있고, 혁신 창업기업의 자금 조달 라운드에 개인들도 참여할 수 있는 Future Fund: Breakthrough 프로그램을 운영함으로써 AI 창업기업의 자금 마련을 지원하고 있다. 본 연구의 한계로는 제한된 수의 국가 분석, 비교 대상 국가들의 정책환경을 동일 조건 하에서 분석하지 못한 점 등을 들 수 있다.

  • PDF

직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로 (An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet)

  • 최기철;이상용
    • 경영정보학연구
    • /
    • 제20권2호
    • /
    • pp.39-62
    • /
    • 2018
  • 컴퓨터 연산능력의 향상과 데이터를 수집하고 가공해 분석이 가능하도록 데이터를 정형화 시키는 기술이 발달함에 따라, 소셜미디어 및 인터넷 공간에서 생산되는 다양한 텍스트 데이터를 수집하고 그것을 분석하는 시도가 늘고 있다. 본 연구는 이와 같은 기술의 발전과 새롭게 시도되고 있는 분석법을 활용해 텍스트 데이터를 분석하여 과거에 설문조사 방법을 통해 확인했던 "내부마케팅"의 효과를 기존과는 다른 방식으로 확인해 보고자 하였다. 이와 같은 분석을 위해, 전/현직자들이 해당 기업의 구직자들에게 기업의 리뷰를 제공하는 플랫폼 잡플래닛(www.jobplanet.co.kr)의 리뷰 데이터를 웹크롤러를 생성하여 약 4만 건을 수집하였다. 또한 수집된 비정형 데이터를 정형화하기 위한 형태소 분석을 진행하여 명사만을 추출한 후, 미리 생성해 놓은 단어주머니에 들어있는 단어와 같을 경우 그 숫자를 세어 분류화를 진행하였다. 분류화된 내부마케팅 영역별 단어 수의 변화를 독립변수로, 시가총액 변동률을 종속변수로 활용하여, 내부마케팅과 시가총액간의 관계를 확인하고자 하였다. 그 결과, 대부분의 기존 연구와는 다르게 내부마케팅의 효과는 제한적인 영역에서만 기업의 성과에 긍정적인 영향을 미치며 대부분의 환경에서는 음의 영향을 미치는 것으로 나타났다. 산업군으로 나누었을 때, 제조업에서는 여성지원과 교육 훈련 부문에서 기업성과에 긍정의 영향을 미치는 것으로 나타났으나, 유통업에서는 직원 복지, 일-가정 양립 그리고 바이오/제약 업종에서는 직원 복지, 일-가정 양립, 사내 커뮤니케이션 그리고 보상 부문에서 모두 기업성과에 음의 영향을 미치는 것으로 나타났다. 또한 기업의 규모가 크고 역사가 오래된 기업에서는 직원 복지가 기업성과에 악영향을 미치는 것으로 나타났으나, 교육 훈련 부문에서는 종속변수에 긍정적 영향을 미치는 것을 확인할 수 있었으며, 기업의 규모가 작고 역사가 짧은 기업에서는 직원 복지, 사내 커뮤니케이션 그리고 일-가정 양립에서 종속변수와 음의 관계를, 여성지원 에서는 종속변수와 양의 관계를 갖는 것으로 나타났다. 본 연구는 이러한 결과들을 분석하여 이론적 의미뿐만 아니라, 실무적 함의를 제시하고자 하였다.

MELAS 증후군과 미토콘드리아 근육병에서의 Tc-99m ECD 뇌단일 광전자방출 전산화단층촬영 소견: 자기공명영상과의 비교 (Tc-99m ECD Brain SPECT in MELAS Syndrome and Mitochondrial Myopathy: Comparison with MR findings)

  • 박상준;유영훈;전태주;김재근;남지은;윤평호;윤춘식;이종두
    • 대한핵의학회지
    • /
    • 제32권6호
    • /
    • pp.490-496
    • /
    • 1998
  • 목적: 본 연구의 목적은 MELAS 증후군과 미토콘드리아 근육병의 뇌 SPECT 소견을 알아보고 SPECT 소견과 자기공명영상 소견을 비교 분석하여 MELAS증후군의 특징적인 영상 소견을 찾아보고자 하였고 MELAS 증후군에 있어서 뇌 SPECT의 역할을 평가해 보고자 하였다. 대상 및 방법: 뇌졸중 유사 증상이나 경련 또는 발달 지연을 주소로 하였고, 혈청 또는 뇌척수액의 lactic acid치가 상승되어 있는 1세에서 25세의 5명의 환자를 대상으로 하였고 남녀비는 4:1이었다. 모든 환자에서 Tc-99m ECD를 이용한 뇌혈류 단일광전자방출 전산화 단층촬영술(SPECT)와 자기공명영상을 시행하여 영상 소견을 분석하였다. 결과: 자기공명영상에서는 주로 두정엽(4/5)과 후두엽(4/5), 그리고 기저핵(1/5)에 백질과 회백질에 증가된 T2 신호강도를 나타내었는데, 특정한 혈관 영역에는 부합하지 않는 병변의 분포양상을 보였다. SPECT상에서는 자기공명영상에서 이상소견을 보인 모든 부위에서 관류 저하를 보였으며 추가적으로 두정엽(1예), 측두엽(1예), 전두엽(1예), 기저핵(1예)와 시상(2예)에서도 감소된 Tc-99m ECD의 섭취를 나타내어서, 자기공명영상과 SPECT에서 이상 소견을 보인 수를 비교하면 자기공명영상에서 나타난 해부학적인 이상소견보다 SPECT에서 보인 관류 저하가 더 광범위하였다. 결론: MELAS 증후군의 SPECT에서는 특정한 혈관 영역에는 부합하지 않는 두정엽과 후두엽, 기저핵, 시상, 측두엽등의 관류저하를 보여 주었는데, 본 연구의 여러 제한점으로 인하여 MELAS 증후군에서만 나타나는 특징적인 소견이라고 할 수는 없었다. 자기공명영상에서 상응하는 이상 소견이 없이 SPECT에서만 관류 저하를 보이는 경우의 중요성은 좀 더 많은 수의환자를 대상으로 한 연구를 통해 평가되어져야 할 것으로 생각한다. 나타내었다.속도를 향상시킬 수 있었다. 정상인의 뇌영상에 대해 위치 정합을 실시한 결과 평균 거리 오차는 2mm 이하였다. 가중정규화 방법을 사용하였을 때 합성된 영상의 정성적인 식별 명확도가 향상하였다. 결론: 견실한 PET 영상 경계점 추출과 거리지도를 이용한 계산 속도의 향상을 통해 뇌 PET과 MR 영상 합성기법의 성능을 개선할 수 있었으며 이를 이용하며 개발한 영상정합 프로그램은 임상 환경에서 유용하게 사용될 수 있을 것이다.은 환자군을 대상으로 한 추가 연구가 필요한 것으로 판단된다.07% ID/g 이하로 매우 낮았다. 결론: 이실험에서 표지한 Re-188 황 교질은 표지효율과 안정성이 높고 임상적으로 방사선 활액막 절제술 등에 사용할 수 있을 것으로 생각한다.}I$] 또는 [$^{131}I$]OMIMT는 종양의 아미노산 대사 영상제제로 이용될 수 있으며 앞으로 이에 대한 임상연구가 필요할 것으로 생각되었다.>$R_A,\;R_v$의 결과간에 좋은 상관관계를 가졌다. 따라서 이러한 약역학 컴퓨터시뮬레이션이 SPECT 영상을 이용한 도파민 운반체 또는 수용체 정량분석을 최적화하는데 매우 유용할 것으로 생각된다.TEX>-CIT SPECT는 파킨슨병의 조기진단 및 진행 추적에 임상적으로 유용할 것으로 판단된다., SCC 4예, AC 1예)였으며, 11예 중 9예(81.8%)에서 방사선학적 검사결과와 Tc-99m MIBI섭취율의 변화가 일치하였다. 결론적으로, Tc-99m MIBI SPECT는 폐암병소의 국소화 및 방사선치료 효과의 판정에 어느정도 유용하리라 사료되었다.냈고 4명에서는 low CBD obstruction을 나타내었으며 후에 CBD stone, CBD carcinoma, gall bladder Ca.의 porta hepatis 전이 및 clonorchis worms의 cluster에

  • PDF

온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안 (The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce)

  • 김기태;오원석;임근원;차은우;신민영;김종우
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.1-23
    • /
    • 2018
  • E-commerce 환경의 발전으로 소비자들은 다양한 상품들을 한 자리에서 폭 넓게 비교할 수 있게 되었다. 하지만 온라인 쇼핑몰에 올라와있는 상당량의 주요 상품 정보들이 이미지 형태이기 때문에 컴퓨터가 인지할 수 있는 텍스트 기반 검색 시스템에 반영될 수 없다는 한계가 존재한다. 이러한 한계점은 일반적으로 기존 기계학습 기술 및 OCR(Optical Character Recognition) 기술을 활용해, 이미지 형태로 된 키워드를 인식함으로써 개선할 수 있다. 그러나 기존 OCR 기술은 이미지 안에 글자가 아닌 그림이 많고 글자 크기가 작으면 낮은 인식률을 보인다는 문제가 있다. 이에 본 연구에서는 기존 기술들의 한계점을 해결하기 위하여, 딥러닝 기반 사물인식 모형 중 하나인 SSD(Single Shot MultiBox Detector)를 개조하여 이미지 형태의 상품 카탈로그 내의 텍스트 인식모형을 설계하였다. 하지만 이를 학습시키기 위한 데이터를 구축하는 데 상당한 시간과 비용이 필요했는데, 이는 지도학습의 방법론을 따르는 SSD 모형은 훈련 데이터마다 직접 정답 라벨링을 해줘야 하기 때문이다. 본 연구는 이러한 문제점을 해결하기 위해 '훈련 데이터 자동 생성 프로그램'을 함께 개발하였다. 훈련 데이터 자동 생성 프로그램을 통해 수작업으로 데이터를 만드는 것에 비하여 시간과 비용을 대폭 절감할 수 있었으며, 생성된 훈련용 데이터를 통해 모형의 인식 성능을 높일 수 있었다. 더 나아가 실험연구를 통해 자동으로 생성된 훈련 데이터의 특징별로 인식기 모형의 성능에 얼마나 큰 영향을 끼치는지 알아보고, 성능 향상에 효과적인 데이터의 특징을 분석하였다. 본 연구를 통해서 개발된 상품 카탈로그 내 텍스트 인식모형과 훈련 데이터 자동 생성 프로그램은 온라인 쇼핑몰 판매자들의 상품 정보 등록 수고를 줄여줄 수 있으며, 구매자들의 상품 검색 시 결과의 정확성을 향상시키는 데 기여할 수 있을 것으로 기대한다.

N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구 (A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET)

  • 김준영;이경한;김상은;최연성;주희경;김영진;김병태;최용
    • 대한핵의학회지
    • /
    • 제31권1호
    • /
    • pp.73-82
    • /
    • 1997
  • N-13 암모니아 PET 동적영상을 이용하여 심근혈류량을 측정할 때, 부분용적효과와 스필오버현상을 보정하는 새로운 방법을 고안하고, 이 방법을 이용하여 측정한 심근혈류량을 2구획모델만을 이용한 종래의 방법과 비교, 분석하여 새로운 방법에 대한 효율성과 정확성을 고찰한다. 9명의 관상동맥 환자에서 20mCi의 N-13 암모니아를 안정상태와 부하상태에서 주사한 후, PET 동적영상을 얻어 심근의 3부분(중격, 전면벽, 측면벽)과 좌심실방에 관심영역을 그려 시간-방사능곡선을 얻었다. 심근의 3부분에 대한 심근혈류량과 스필오버분획을 기하학적 관심영역 모델 개념을 2구획모델에 포함시킨 새로운 방법과 종래의 2구획모델 방법으로 각각 구하였다. 이때 관심영역의 위치에 따른 심근혈류량을 알아보기 위해서 심근 밖에서 좌심실 중심쪽으로 20개의 관심영역을 그리고, 위의 두 방법을 이용하여 심근혈류량을 구하였다. 종래의 N-13 암모니아 2구획모델과 기하학적 모델 개념을 2구획모델에 포함시킨 새로운 방법으로 모델 합치 곡선을 구하였다. 관심영역 위치 변화에 대한 심근혈류량의 값을 종래의 방법과 새로운 방법으로 구하고, 부분용적효과를 정확하게 보정하기 위하여 관심영역을 심내막쪽에 설정하였다. 총 108개의 심근관심영역에서 두 가지 방법을 이용하여 구한 심근혈류량 사이의 회귀곡선 기울기는 1.57, 상관계수는 0.88이었다. 그리고 같은 방법으로 얻어진 스필오버분획들도 선형적 상관관계(r=1.00, 기울기=0.98)가 있었다. 결론적으로 N-13 암모니아 PET 동적영상과 기하학적 모델 개념을 2구획모델에 포함시킨 새로운 방법을 이용하여 구한 심근혈류량은 종래의 방법보다 더 효율적이며 정확하게 정량화되어짐을 알 수 있었으며, 앞으로 임상환경에서 심근혈류량 정량분석연구에 유용할 것이라고 생각한다. 환자 군에 비해 유의하게 낮았다(p<0.01). 결론적으로, 흉통을 호소한 환자에서 심근관류 신티그라피상 정상인 경우에는 심장사건의 발생율이 낮음을 알 수 있었고, 특히 관동맥조영술에 관동맥병변이있는 환자와 없는 환자간에 1차 심장사건의 발생율에 유의한 차이가 없는 것을 고려하면, 심근관류 신티그라피가 정상소견을 보이는 흉통환자는 정상 관동맥조영술 소견을 보이는 환자에 준하여 치료하여도 좋을 것으로 사료되었다.리고 0.19, 0.40, 0.53, 0.61이었다. 실제 속도상수의 비 $k_3/k_4$에 대한 (BG-OCC)/OCC와 $R_A,\;R_v$간의 상관계수는 각각 0.983, 0.984, 0.999이었으며 그때의 기울기는 각각 1.76, 0.47, 1.25이었다. 결 론 : IPT 약역학은 시간이 흐름에 따라 혈류량의 변동에 비해 도파민 운반체량의 변동에 더욱 민감한 경향을 보였으며 $k_3/k_4$에 대한 (BG-OCC)/OCC, $R_A,\;R_v$의 결과간에 좋은 상관관계를 가졌다. 따라서 이러한 약역학 컴퓨터시뮬레이션이 SPECT 영상을 이용한 도파민 운반체 또는 수용체 정량분석을 최적화하는데 매우 유용할 것으로 생각된다.TEX>-CIT SPECT는 파킨슨병의 조기진단 및 진행 추적에 임상적으로 유용할 것으로 판단된다., SCC 4예, AC 1예)였으며, 11예 중 9예(81.8%)에서 방사선학적 검사결과와 Tc-99m MIBI섭취율의 변화가 일치하였다. 결론적으로, Tc-99m MIBI SPECT는 폐암병소의 국소화 및 방사선치료 효과의 판정에 어느정도 유용하리라 사료되었다.냈고 4명에서는 low CBD obstruction을 나타내었으며 후에 CBD stone, CBD carcinoma,

  • PDF

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.