• Title/Summary/Keyword: 컬

Search Result 363, Processing Time 0.025 seconds

Research of Data Collection for AI Education Using Physical Computing Tools (피지컬 교구를 이용한 인공지능 교육용 데이터 수집 연구)

  • Lee, Jaeho;Jun, Doyeon
    • Journal of Creative Information Culture
    • /
    • v.7 no.4
    • /
    • pp.265-277
    • /
    • 2021
  • Data is the core of AI technology. With the development of technology, AI technology is also accelerating as the amount of data increases explosively than before. However, compared to the interest in AI education, research on data education with AI is still insufficient. According to the case analysis of exsisting AI data education, there were cases of educating the process and part of data science, but it was hard to find studies related to data collection. Cause physical computing tools have a positive effect on AI education for elementary school students, data collection cases using tools were studied, but researches related to data collection were rare. Therefore, in this study, an efficient data collection method using physical tools was designed. A structural diagram of a data collection program was created using COBL S, a modular physical computing teaching tool, and examples of program screens from the service side and the user side were configured. This study has limitations in that the establishment of an AI education platform that can be used in conjunction with future program production and programs should be prioritized as a proposal in terms of design.

Development and Effectiveness of Problem Solving based Safety Education Program using Physical Computing

  • Jooyoun Song;YeonKyoung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.235-243
    • /
    • 2023
  • In this paper, we developed a problem-solving based safety education program using physical computing for middle school students and applied it to verify the impact on self-efficacy and interest. The safety education program developed in this study includes four stages of the creative problem-solving model: problem identification, planning, implementation, and evaluation, and learning activities using Arduino, a physical computing tool. After implementing the education program with 77 third-year middle school students, both self-efficacy and interest of middle school students increased significantly. Based on the research results, the effectiveness of the safety education program that used physical computing and problem-solving steps was confirmed, and practical implications were presented to promote the activation of physical computing education in the school field.

The Effect of Physical Computing Programming Education Integrating Artificial Intelligence on Computational Thinking Ability of Elementary School Students

  • Yoo Seong Kim;Yung Sik Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.227-235
    • /
    • 2024
  • In the era of the information revolution, the need for artificial intelligence convergence education is emerging in the trend of global change. Therefore, in this paper, a physical computing programming education method that combines artificial intelligence was developed and applied. The control group was provided with physical computing programming education that did not converge with artificial intelligence, and the experimental group developed and applied a physical computing programming education method that fused artificial intelligence to analyze the impact on elementary school students' computing thinking ability. As a result, it was confirmed that physical computing programming education fused with artificial intelligence had a more positive effect on enhancing elementary school students' computational thinking skills compared to physical computing programming education without artificial intelligence.

A Study on the Characteristics of Bridge Bearings Behavior by Finite Element Analysis and Model Test (유한요소 해석과 모형실험을 통한 교량받침의 거동특성 연구)

  • Lee, Jae-Uk;Jung, Hie-Young;Oh, Ju;Park, Jin-Young;Kim, See-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.96-106
    • /
    • 2014
  • The increased vibration level of the railway bridge could make significant noise and, also, cause structural damages such as fatigue cracks. Related to these subjects, a spherical elastomeric bridge bearing, which is layered by hemispherical rubber and steel plates, was investigated in terms of its vibration performance. Several different shape factors could be considered by changing the curvature of hemispherical surface and size in rubber and steel plate thicknesses in the manufacturing stage. The performance of the spherical elastomeric bearing for the reduction in vibration was compared with that of the conventional bearing by performing vibration experiments on a scale-downed model. The rubber material characteristics and spherical shape are found to be important parameters in reducing the bridge vibration.

The Effect of SW education based on Physical Computing on the Computational Thinking ability of elementary school students (피지컬 컴퓨팅 기반 소프트웨어 교육이 초등학생의 컴퓨팅 사고력에 미치는 영향)

  • Lee, Jaeho;Kim, SunHyang
    • Journal of Creative Information Culture
    • /
    • v.7 no.4
    • /
    • pp.243-255
    • /
    • 2021
  • The purpose of this study is to investigate the effect of software education based on physical computing on the CT ability of elementary school students. To this end, previous studies related to physical computing software education and software education in the 2015 revised curriculum were analyzed. In addition, COBL was selected among many physical computing tools on the market in consideration of the level and characteristics of learners in the school to conduct the study, and 'Professor Lee Jae-ho's AI Maker Coding with COBL' was used as the textbook. This study was conducted for 10 sessions on 135 students in 6 classes in 6th grade of H Elementary School located in Pyeongtaek, Gyeong gi-do. The results of this study are as follows. First, it was confirmed that physical computing software education linked to real life was effective in improving the CT ability of elementary school students. Second, the change in competency of CT ability by sector improved evenly from 8 to 30 points in the pre-score and post-score of computing thinking ability. Third, in this study, it was confirmed that 87% of students were very positive as a result of a survey of satisfaction with classes after real-life physical computing software education. We hope that follow-up studies will help select various regions across cities and rural areas, and prove that real-life physical computing software education for various learner members, including large and small schools, will help elementary school students improve their CT ability.

Development and Applyment Selection Standards of Physical Computing Teaching Aids for Elementary SW Education According to the 2015 Revised Curriculum (2015 개정 교육과정의 초등학교 소프트웨어 교육을 위한 피지컬 컴퓨팅 교구 선택 기준 개발 및 적용)

  • Lee, Young-jae;Jeon, Hyung-gi;Kim, Yungsik
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.4
    • /
    • pp.437-450
    • /
    • 2017
  • This study derived optimized teaching aids that use the physical computing method as the solution for effective software education at the elementary level. We set standard for selecting physical computing teaching aids in elementary-level by gathering the opinions from previous studies and think tanks and then applied the standard to some aids and choose one. We also made lesson plan and tried it to the experimental group. Subsequently, students' logical thinking skills showed a statistically significant improvement in terms of the t-test. Also, in the analysis of the effect size, it was shown to have a positive influence on the improvement of the students' logical thinking skills. Additionally, survey of satisfaction evaluation from the students showed that the teaching aid selection standard was effective in selecting suitable teaching aids for elementary students and that the classroom activities utilizing physical computing teaching aids were at a suitable level for elementary students.

A Study on the Type and It's Characteristics of Tropical Space Style in Southeast Asia (동남아시아 트로피컬 공간스타일의 유형 및 특성 연구)

  • Park, Woo Hee;Oh, Hye Kyung
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.179-187
    • /
    • 2013
  • The purpose of this study was to explain the uniqueness of tropical space style by identifying it in Southeast Asia. For this purpose, literature review was examined from 26 specialized tropical space style books and categorized. Its results are expected to be used as reference materials in designing spaces related to Southeast Asia and for constructors planning to run their business in Southeast Asia or Korea. The results of categorization are as follows; 'Tropical Traditional', 'Tropical Colonial' and 'Tropical Modern'. First, in case of Tropical Traditional Style, the traditional styles are adopted in roof and some of traditional styles are adopted in walls, windows and doors. Second, in case of Tropical Colonial Style, Renaissance or neo-classical styles are adopted in most of columns, archs, windows and doors. The traditional styles are also blended. Third, in case of Tropical Modern Style, straight line designs are adopted dominantly. However, decorative objects of traditional style are used to catch eyes. In summary, traditional style are imbedded more or less in all of tropical style and particularly, decorative objects of traditional style are key elements representing tropical space.

Vocal and nonvocal separation using combination of kernel model and long-short term memory networks (커널 모델과 장단기 기억 신경망을 결합한 보컬 및 비보컬 분리)

  • Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.261-266
    • /
    • 2017
  • In this paper, we propose a vocal and nonvocal separation method which uses a combination of kernel model and LSTM (Long-Short Term Memory) networks. Conventional vocal and nonvocal separation methods estimate the vocal component even in sections where only non-vocal components exist. This causes a problem of the source estimation error. Therefore we combine the existing kernel based separation method with the vocal/nonvocal classification based on LSTM networks in order to overcome the limitation of the existing separation methods. We propose a parallel combined separation algorithm and series combined separation algorithm as combination structures. The experimental results verify that the proposed method achieves better separation performance than the conventional approaches.

Development and Application of Interactive Prototyping Programming Learning Model based on Physical Computing (피지컬 컴퓨팅 기반의 인터랙티브 프로토타이핑 프로그래밍 학습모형 개발 및 적용)

  • Seo, Jeonghyun
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.3
    • /
    • pp.297-305
    • /
    • 2018
  • Physical computing is the concept of expanding computing to humans, environments, and objects. It draws attention as a programming learning medium based on physical outputs in integration of hardware and software. This study developed a programming learning model based on interactive prototyping using the characteristics of physical computing with a high degree of technical freedom and analyzed its learning effect in an experiment. To examine the effect of the experimental treatment, this researcher divided fifty nine 5th-grade elementary students into an experimental group and into a control group. the interactive prototyping programming learning model was applied to the experimental group, and a linear sequential programming learning model was applied to the control group. Information Science Creative Personality Test was conducted before and after the experimental treatment. Analysis of Covariance was conducted with the pre-test scores of the two groups. As a result, it was proved that there was the effect of learning at the significance level of .05. It indicates that the physical computing based interactive prototyping programming learning model is applicable to the programming learning for 5th-grade elementary students.

Development and application of online physical computing curriculum for pre-service teachers (예비교사를 위한 온라인 피지컬 컴퓨팅 교육과정 개발과 적용)

  • Kim, Tae-ryeong;Han, Sun-gwan
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.4
    • /
    • pp.621-632
    • /
    • 2021
  • This study is about development and application of a curriculum to implement physical computing education in an online environment for pre-service teachers. First, a 15-week software and physical computing curriculum was designed according to the ADDIE instructional design model. As a tool that can be used online, education was conducted on a program using various sensors using Pocket Code, an EPL based on a smartphone. As a result of the application of the program, Personal efficacy, Pedagogical knowledge, Technology teaching content knowledge, Result expectation, and Student belief were all significantly improved. In the software attitude part, Software interest and Software value part increased significantly, and the Perception of software engineers did not change. In general, in the case of physical computing, it is difficult to execute in an online environment because it involves a lot of manipulation activity. Through various studies that can continue education in a non-face-to-face environment or a blended environment in the post-corona era, it is hoped that it will be possible to provide a high-quality curriculum to pre-service teachers in charge of future education.