• 제목/요약/키워드: 컬러정보

검색결과 1,033건 처리시간 0.029초

차선 검출 기반 카메라 이동 경보 시스템 (A Camera Panning Warning System Based on Lane Detection)

  • 도진규;김규영;김현태;박장식;유윤식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.616-618
    • /
    • 2012
  • 본 논문에서는 터널 내 환경에서 2차 사고의 위험성이 되는 정지차량, 보행자와 같은 유고상황 검출 시스템의 안전성을 확보하고 효율성을 증대시킬 수 있도록 하기위해 차선검출알고리즘에 기반하여 카메라 이동을 조기에 감지하는 방법을 제시한다. 제안하는 알고리즘은 다른 컬러변환 및 복잡한 계산량 증가 없이 입력되는 RGB 컬러 정보의 실험적 분석을 통하여 효과적으로 차선을 검출함으로써 카메라 이동을 감지한다. 제안하는 알고리즘은 직선을 찾는 알고리즘에 비해 수행시간을 단축시킬 수 있으며 실시간 처리에 용이함을 알 수 있으며 운전보조안전시스템에서 활용 가능함을 알 수 있다.

컬러 및 광류정보를 이용한 이동물체 추적 (A Moving Object Tracking using Color and OpticalFlow Information)

  • 김주현;최한고
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.319-322
    • /
    • 2013
  • 본 연구에서는 이동 객체를 컬러기반에서 추적하는데 있어 주변 환경 변화와 추적중인 객체 색상이 유사한 물체가 존재할 경우 보다 안정적으로 추적할 수 있는 방법을 제시한다. 백그라운드 차영상과 모폴로지 연산을 통하여 이동 객체를 검출하고, 매 프레임마다 발생하는 밝기 및 주변 환경의 영향을 고려하여 기존의 CamShift 알고리즘을 보완하였다. 추적 물체와 색상이 비슷한 주변 물체가 존재할 경우 개선된 CamShift는 불안정한 추적을 보여주었는데 이를 해결하기 위해 Optical Flow기반의 KLT 알고리즘과 병합하는 방법을 제시하였다. 실험 결과를 통해 제안된 추적 방법은 기존의 단점을 보완하였으며 추적성능이 개선됨을 확인하였다.

다중 스펙트럼 영상 시스템 기반의 스펙트럼 반사율 추정 (Estimation of the Spectral Reflectance based on the Multispectral Imaging System)

  • 유현진;김덕봉;이관행
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.546-549
    • /
    • 2010
  • RGB 영상의 색 재현성과 조건등색 등의 한계를 개선하기 위해 다중스펙트럼 영상을 활용하는 연구가 활발히 진행되고 있다. 다중스펙트럼 영상을 측정하기 위해서 흑백카메라와 3 개 이상의 컬러 필터들을 이용한다. 본 연구에서는 LCTF 를 사용하여 400nm 에서 720nm 까지 10nm 단위로 33 개의 필터를 사용한다. 이러한 다중스펙트럼 영상 측정 시스템의 특성화를 수행하기 위해 컬러체커뿐만 아니라 광원정보까지 이용하며, 사물의 스펙트럼 반사율도 추정한다. 따라서 분광방사계 보다 빠르게 영상 기반으로 스펙트럼 반사율을 측정할 수 있다. 다양한 광원 조건에서 특성화를 수행하며, 매번 레퍼런스 차트를 측정할 필요 없이 간단히 광원만 측정해도 되는 것을 보인다. 또한 전경영상에서 원하는 영역을 광원환경이 다른 배경 영상에 합성할 때, 자연스러운 사물의 색 변환이 가능하여 보다 실제에 가까운 합성 영상을 생성한다.

다중 컬러필터 조리개 시스템을 위한 적응적 히스토그램 평활화를 이용한 영상 개선 (Image Enhancement Using Adaptive Region-based Histogram Equalization for Multiple Color-Filter Aperture System)

  • 이은성;강원석;김상진;백준기
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.65-73
    • /
    • 2011
  • 본 논문은 다중 컬러 필터 조리개 (multiple color-filter aperture; MCA) 시스템에서 영역 적응적 히스토그램 평활화를 사용하여 저노출 환경에서도 강건한 새로운 디지털 다중초점 (multifocusing) 방법을 소개한다. MCA 시스템은 획득된 영상의 컬러 채널 간에 발생하는 부정합 (misalignment) 정도를 측정하여 카메라의 거리에 따른 장면의 상대적 심도 정보를 추출한다. 추출된 상대적 심도 정보는 관심영역 (regsion-of-interests; ROIs) 분류 (classification), 정합 (registration), 융합 (fusion) 등의 과정을 통하여 다중초점 영상을 생성한다. 그러나 MCA 시스템은 유한한 구경의 조리개로 때문에 저노출 환경에서 성능의 저하를 초래하게 된다. 이러한 문제를 해결하기 위해 공간 적응적 히스토그램 확장을 이용한다. 실험결과에서 볼 수 있듯이, 제안한 기술은 저노출 환경에서도 콘트라스트가 향상된 다중초점 영상을 복원할 수 있음을 보여준다.

피부색 모델 기반의 효과적인 얼굴 검출 연구 (Efficient Face Detection based on Skin Color Model)

  • 백영현
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.38-43
    • /
    • 2008
  • 피부색 정보는 컬러영상에 포함된 얼굴영역을 검출하는 중요한 요소이다. 피부색 정보로 부터 생성된 통계 피부색 모델을 이용하여 얼굴영역을 검출할 수 있다. 하지만 다른 피부색 부분이 포함되어 있는 컬러영상에서는 일반적인 통계 피부색 모델만으로 정확한 얼굴영역 검출을 할 수 없는 단점을 가진다. 본 논문에서는 다른 피부색 부분이 포함되어 있는 다양한 컬러 영상에서 얼굴영역만을 정확히 검출하기 위한 방법을 제안한다. 제안된 방법은 YCbCr 피부 컬러 모델기반의 피부색 가우시안 분포를 적용하여 얼굴 후보영역 설정 하였고, 영상내의 잡음 부분과 얼굴 영역이외의 부분을 제거하기 위해 수학적 형태학을 적용하였다. 그리고 Haar-like 특성을 이용하여 정확한 얼굴 검출을 수행하였다. 모의실험 결과 제안된 방법이 목이나 팔과 같이 유사한 피부색을 포함한 영상과 다양한 크기의 영상에서도 효과적인 얼굴영역 검출하는 우수함을 보였다.

GPGPU 기반의 깊이 영상 화질 개선 기법 (GPGPU based Depth Image Enhancement Algorithm)

  • 한재영;고진웅;유지상
    • 한국정보통신학회논문지
    • /
    • 제17권12호
    • /
    • pp.2927-2936
    • /
    • 2013
  • 본 논문에서는 3D 콘텐츠 생성 시 필요한 깊이 영상의 화질 개선을 위하여 잡음 제거 기법과 홀 채움 기법을 제안한다. 제안하는 기법에서는 컬러 영상과 깊이 영상을 모두 이용하게 된다. 먼저 입력된 컬러 영상을 RGB 색상계에서 HSI 색상계로 변환하여 밝기 영상을 생성한다. 그리고 깊이 영상에서 기준 화소와 주변 화소간의 거리 값, 깊이 값의 차이를 구하고 컬러 영상의 밝기 값 차이를 계산하여 제안하는 잡음 제거 기법에 이용한다. 이후 홀을 탐색하여 홀과 주변 화소간의 거리, 컬러 영상의 밝기 값 차이를 제안하는 홀 채움 기법을 적용하여 깊이 영상 내에 존재하는 홀을 채우게 된다. 마지막으로 실시간 환경에 적용하기 위하여 제안하는 기법을 GPU로 병렬화하여 속도 향상을 하고자 하였다. 실험을 통하여 제안한 기법이 기존 기법에서 발생하는 경계 부분의 흐려짐 현상을 줄이면서 홀을 채우는 것을 확인하였다.

컬러 분포와 WordNet상의 유사도 측정을 이용한 의미적 이미지 검색 (Semantic Image Retrieval Using Color Distribution and Similarity Measurement in WordNet)

  • 최준호;조미영;김판구
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.509-516
    • /
    • 2004
  • 의미기반 이미지 검색에서의 의미적 내용 인식은 주석 위주의 텍스트 정보를 이용하는 것이 일반적이다. 이러한 텍스트 정보 기반 이미지 검색은 전통적인 검색 방법인 키워드 검색 기술을 그대로 사하여 쉽게 구현할 수 있으나, 텍스트의 개념적 매칭이 아닌 스트링 매칭이므로 주석 처리된 단어와 정확한 매칭이 없다면 검색할 수 없는 단점이 있었다. 이에 본 논문에서는 Ontology의 일종인 WordNet을 이용하여 깊이, 정보량, 링크 타입, 밀도 등을 고려한 단어간 의미 유사도를 측정하여 패턴 매칭의 문제점을 해결하고자 한다. 또한, 이미지의 컬러 분포 유사도를 측정하여 저차원 특징과 결합한 의미적 이미지 검색이 가능하도록 설계하였다. 제안된 검색 방안에 대해 'Microsoft Design Gallery Live'의 주석을 포함한 이미지를 대상으로 실험한 결과, 기존 의미기반 검색 시스템보다 향상된 결과를 확인하였다.

반복적인 격자 워핑 기법을 이용한 깊이 영상 초해상화 기술 (Iterative Deep Convolutional Grid Warping Network for Joint Depth Upsampling)

  • 김동신;양윤모;오병태
    • 방송공학회논문지
    • /
    • 제25권6호
    • /
    • pp.965-972
    • /
    • 2020
  • 깊이 영상은 물체와의 거리 정보를 가지고 있다. 이는 3D 정보를 구성하는데 중요한 역할을 한다. 보통 같은 시점에서 얻은 컬러 영상과 깊이 영상을 함께 사용한다. 그런데 하드웨어 기술의 한계로 인해 깊이 영상은 쌍을 이루는 컬러 영상에 비해 낮은 해상도를 갖는다. 따라서 일반적으로 깊이 영상을 사용할 때 영상의 해상도를 컬러 영상의 해상도에 맞게 업샘플링을 진행한 후 사용한다. 본 논문에서는 깊이 영상의 해상도를 높이기 위해 화소 값을 개선시키는 일반적인 방법이 아닌 화소의 위치를 이동시키는 방법을 제안한다. 제안하는 기법에서는 화소의 위치를 경계 주변에서 경계 중앙으로 이동시키며 이 과정을 여러 단계에 걸쳐 진행하여 블러된 영상을 복원한다. 실험 결과를 통해 제안하는 방법이 기존 방법들에 비해 정량적, 시각적 품질을 모두 개선시켰음을 알 수 있다.

저속주행환경에서 컬러비전 기반의 근거리 전방차량추적 (Color Vision Based Close Leading Vehicle Tracking in Stop-and-Go Traffic Condition)

  • 노광현;한민홍
    • 한국정보처리학회논문지
    • /
    • 제7권9호
    • /
    • pp.3037-3047
    • /
    • 2000
  • 본 논문에서는 커러영상처리로 차량 후면에 위치하고 붉은색을 띄는 미등과 브레이크등을 이용하여 저속주행환경에서 근거리 전방차량을 추적하는 방법에 대해 설명한다. HSV 컬러모델로 변환된 컬러영상에서 미등과 브레이크등의 컬러특징을 이용하여 후보영역을 분할한 후, 미등과 브레이크등 패턴의 기하학적 특징과 위치적 특징을 이용하여 한 쌍의 미등 혹은 브레이크등을 탐지한다. 탐지된 등의 위치를 이용하여 전방차량의 위치를 측정하고 연속적으로 추적한다. 또한, 등 영역내의 HSV 컬러요소 변화를 측정하여 전방차량의 브레이크 사용여부를 판단한다. 도심지의 도로영상을 이용한 실험에서 성공적으로 근거리 전방차량을 추적할 수 있었으며, 주간보다 야간에서 효과적으로 적용될 수 있었다. 또한 본 알고리즘이 구현된 컬러비전시스템을 무인자동차 KAV-III(Korea Autonomous Vehicle-III)에 탑재하여 야간에 자동으로 전방차량을 15km/h의 속도로 따라갈 수 있는 결과를 얻었다. 이 방법은 도심지에서 가다서다를 반복하는 저속주행환경에서 차량 스스로 운전하여 운전자의 부담을 줄일 수 있는 LSA(Low Speed Automation)시스템 개발에 적용될 수 있을 것이다.

  • PDF

다중 질의를 위한 적응적 영상 내용 기반 검색 기법 (Adaptive Image Content-Based Retrieval Techniques for Multiple Queries)

  • 홍종선;강대성
    • 대한전자공학회논문지SP
    • /
    • 제42권3호
    • /
    • pp.73-80
    • /
    • 2005
  • 본 최근 영상 및 멀티미디어의 시각적인 내용을 기반으로 하는 검색 방법에 관한 많은 연구들이 진행되고 있다. 내용 기반 영상 검색(content-based image retrieval)에 관한 대부분의 기존의 질의 방법은 입력 영상에 의한 질의 또는 컬러(color), 형태(shape), 특징(texture) 등과 같은 low-level 특징을 사용한다. 그러나 이러한 방법들은 비교적 사용하기 불편하고 방법이 편중되어 있어서 일반 사용자들의 다양한 질의 요구에 적합하지 못하다. 본 논문에서 제안하는 것은 내용 기반 영상 검색 시스템 하의 컬러 객체의 자동 추출과 다중 질의를 위한 레이블링 알고리즘이다. 이것은 먼저 single colorizing 알고리즘을 사용하여 영상의 영역을 단순화 시키고 제안하는 Color and Spatial based Binary tree map (CSB tree map)을 이용하여 컬러 객체를 추출한다. 그리고 제안하는 레이블링 알고리즘을 이용하여 데이터베이스의 객체들을 색인한다. 이것은 컬러와 공간 정보를 고속으로 레이블링 하고 객체의 컬러 속성과 크기 및 위치 정보를 이용하여 객체의 컬러 기반과 공간적 기반의 조합을 바탕으로 하는 사용자의 다양한 질의에 부합할 수 있는 적응성 있는 시스템을 구현한다. 본 논문에서는 "Washington" 데이터베이스를 이용한 비교 실험을 통해서 제안하는 시스템의 검색 결과의 우수함을 알 수 있었다.