• 제목/요약/키워드: 컨트롤 시스템

검색결과 523건 처리시간 0.021초

EHRA의 위치제어를 위한 적응 PID 제어기 설계 (Position control of an Electro-Hydrostatic Rotary Actuator using adaptive PID control)

  • 하태욱;전기호;응우엔 민 찌;한성민;신정우;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.37-44
    • /
    • 2017
  • This paper introduces a control algorithm for trajectory control of an electro-hydrostatic rotary actuator. A key feature of this paper is that an adaptive PID based on sliding mode is used to control the nonlinearity and uncertainty factor of single input/output system. Accurate knowledge of rotary actuator angle can result in high-performance and efficiency of electro hydraulic system. First, the position control is formulated using the adaptive PID with sliding mode technique and uncertainties in the hydraulic system. Second, the controller can update the PID gains on-line based on error caused by external disturbance and uncertain factors in the system. Finally, three experimental cases were studied to evaluate the proposed control method.

차량 현가장치 성능향상을 위한 댐퍼 최적화 설계에 대한 연구 (A Study on the Optimization Design of Damper for the Improvement of Vehicle Suspension Performance)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.74-80
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of vehicle. It converting the kinetic energy of the shock into another form of energy, typically heat. In a vehicle, a damper reduce vibration of car, leading to improved ride comfort and running stability. Therefore, a damper is one of the most important components in a vehicle suspension system. Conventionally, the design process of vehicle suspensions has been based on trial and error approaches, where designers iteratively change the values of the design variables and reanalyze the system until acceptable design criteria are achieved. Therefore, the ability to tune a damper properly without trial and error is of great interest in suspension system design to reduce time and effort. For this reason, a many previous researches have been done on modeling and simulation of the damper. In this paper, we have conducted optimal design process to find optimal design parameters of damping force which minimize a acceleration of sprung mass for a given suspension system using genetic algorithm.

지연시간을 개선하기 위한 마이크로 컨트롤러의 효율적인 프로그래밍 방법 (Efficient Programming Method in Microcontrollers for Improving Latency)

  • 이경남;김영민
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.1068-1076
    • /
    • 2019
  • 오늘날 우리가 사용하고 있는 대부분의 전자제품에는 마이크로 컨트롤러가 내장되어 있으며, 이를 내장한 미니컴퓨터를 임베디드 시스템이라고 한다. 이러한 소규모 환경에서는 마이크로 컨트롤러에 응답성이 매우 중요한데 본 논문에서는 마이크로 컨트롤러에 기본적인 입출력 제어, 타이머/카운터 인터럽트 동작원리 및 이해에 대한 내용과 더불어 마이크로 컨트롤러 내의 플래시메모리에 각 프로그램 실행 루틴인 메인 루틴 및 인터럽트 서비스루틴에 대한 특징 및 프로그램 실행 순서를 컨트롤하여 처리율과 레이턴시를 개선하는 프로그램 로직을 제안하고 있다. 본 논문에서의 하드웨어 시뮬레이션은 아트멜사와 마이크로칩사에서 출시한 ATmega128과 PIC16F877A 마이크로 컨트롤러를 이용하여 검증이 실시되었다.

서보밸브-미터링 실린더 시스템의 오일 관성효과와 주파수 응답 특성에 관한 연구 (A Study on the Oil Inertia Effect and Frequency Response Characteristics of a Servo Valve-Metering Cylinder System)

  • 윤홍식;김성동
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.9-19
    • /
    • 2021
  • The spool displacement signal of a directional control valve, including the servo valve, can be considered as the standard signal to measure dynamic characteristics. When the spool displacement signal is not available, the velocity signal of a metering cylinder piston can be used. In this study, the frequency response characteristics of the metering cylinder are investigated for the spool displacement input. The transfer functions of the servo valve-metering system are derived taking into consideration the oil inertia effect in the transmission lines. The theoretical results of the transfer functions are verified through computer simulations and experiments. The oil inertia effect in the transmission lines was found to have a very significant effect on the bandwidth frequency of the servo valve-metering cylinder system. In order to more precisely measure the dynamic characteristics of a servo valve, the metering cylinder should be set up to minimize the oil inertia effect by increasing the inner diameters of the transmission lines or shortening their lengths.

굴착기 주행디바이스의 고장 진단을 위한 AI기반 상태 모니터링 시스템 개발 (Development of AI-Based Condition Monitoring System for Failure Diagnosis of Excavator's Travel Device)

  • 백희승;신종호;김성준
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권1호
    • /
    • pp.24-30
    • /
    • 2021
  • There is an increasing interest in condition-based maintenance for the prevention of economic loss due to failure. Moreover, immense research is being carried out in related technologies in the field of construction machinery. In particular, data-based failure diagnosis methods that employ AI (machine & deep learning) algorithms are in the spotlight. In this study, we have focused on the failure diagnosis and mode classification of reduction gear of excavator's travel device by using the AI algorithm. In addition, a remote monitoring system has been developed that can monitor the status of the reduction gear by using the developed diagnosis algorithm. The failure diagnosis algorithm was performed in the process of data acquisition of normal and abnormal under various operating conditions, data processing and analysis by the wavelet transformation, and learning. The developed algorithm was verified based on three-evaluation conditions. Finally, we have built a system that can check the status of the reduction gear of travel devices on the web using the Edge platform, which is embedded with the failure diagnosis algorithm and cloud.

소형 필드로봇의 무선 원격 제어를 위한 조종시스템 구축에 관한 연구 (A Study on Construction of Control System for Wireless Remote Control of Small Field Robot)

  • 최성웅;레쾅호안;손태곤;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.103-112
    • /
    • 2020
  • Field robots are used in various fields, such as agriculture, forestry, manufacturing, and construction; their use has recently expanded to include submarine areas. Field robots can aid in various tasks, such as soil transport, ground clearance, and dismantling of buildings. As field robots are used in a variety of different areas, the difficulty of the work is also quite varied. Increased difficulty is associated with an increased risk of accidents involving the field robot. In order to reduce the accident rate of field robot workers, the need for digitalization and automation of field robots is becoming more of an issue. To this end, it is necessary to study a system that enables workers to do their work without directly contacting a field robot. Therefore, in this paper, we introduce a control system for wireless remote control of a small field robot. The field robot can be wirelessly controlled by a worker in a remote location if the worker cannot be present at the work site. The implemented remote system is tested according to the type of work, and the operating characteristics of the remote system are assessed.

딥러닝 기반 장애물 인식을 위한 가상환경 및 데이터베이스 구축 (Development of Virtual Simulator and Database for Deep Learning-based Object Detection)

  • 이재인;곽기성;김경수;강원율;신대영;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.9-18
    • /
    • 2021
  • This study proposes a method for creating learning datasets to recognize obstacles using deep learning algorithms in automated construction machinery or an autonomous vehicle. Recently, many researchers and engineers have developed various recognition algorithms based on deep learning following an increase in computing power. In particular, the image classification technology and image segmentation technology represent deep learning recognition algorithms. They are used to identify obstacles that interfere with the driving situation of an autonomous vehicle. Therefore, various organizations and companies have started distributing open datasets, but there is a remote possibility that they will perfectly match the user's desired environment. In this study, we created an interface of the virtual simulator such that users can easily create their desired training dataset. In addition, the customized dataset was further advanced by using the RDBMS system, and the recognition rate was improved.

전지형 크레인의 인양물 충돌방지를 위한 환경탐지 센서 시스템 개발 (Collision Avoidance Sensor System for Mobile Crane)

  • 김지철;김영재;김민극;이한민
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.62-69
    • /
    • 2022
  • Construction machinery is exposed to accidents such as collisions, narrowness, and overturns during operation. In particular, mobile crane is operated only with the driver's vision and limited information of the assistant worker. Thus, there is a high risk of an accident. Recently, some collision avoidance device using sensors such as cameras and LiDAR have been applied. However, they are still insufficient to prevent collisions in the omnidirectional 3D space. In this study, a rotating LiDAR device was developed and applied to a 250-ton crane to obtain a full-space point cloud. An algorithm that could provide distance information and safety status to the driver was developed. Also, deep-learning segmentation algorithm was used to classify human-worker. The developed device could recognize obstacles within 100m of a 360-degree range. In the experiment, a safety distance was calculated with an error of 10.3cm at 30m to give the operator an accurate distance and collision alarm.

장애인을 위한 스마트 모빌리티 시스템 개발 (Development of Smart Mobility System for Persons with Disabilities)

  • 유영준;박세은;안태준;양지호;이명규;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.97-103
    • /
    • 2022
  • Low fertility rates and increased life expectancy further exacerbate the process of an aging society. This is also reflected in the gradual increase in the proportion of vulnerable groups in the social population. The demand for improved mobility among vulnerable groups such as the elderly or the disabled has greatly driven the growth of the electric-assisted mobility device market. However, such mobile devices generally require a certain operating capability, which limits the range of vulnerable groups who can use the device and increases the cost of learning. Therefore, autonomous driving technology needs to be introduced to make mobility easier for a wider range of vulnerable groups to meet their needs of work and leisure in different environments. This study uses mini PC Odyssey, Velodyne Lidar VLP-16, electronic device and Linux-based ROS program to realize the functions of working environment recognition, simultaneous localization, map generation and navigation of electric powered mobile devices for vulnerable groups. This autonomous driving mobility device is expected to be of great help to the vulnerable who lack the immediate response in dangerous situations.

굴착기 내구시험 모니터링을 위한 작업부하 지표 개발 (Development of a Workload Index for Monitoring Durability Test of an Excavator)

  • 조재홍;나선준;김민석;박명관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.29-35
    • /
    • 2022
  • In this paper, we developed a workload index for monitoring the durability test using operation information of an excavator. First, the acceleration and cylinder pressure were selected as load factors by analyzing operation data. Through load correlation analysis according to each load factor, Root Mean Square (RMS) and Work Load Range (WLR) were respectively derived as a load feature representing mechanical load. In addition, the workload index was used to quantify load features. For applying the workload index to monitoring, a real-time monitoring system consisting of sensors and embedded controller was installed on the excavator and the system was integrated with a remote monitoring environment using a wireless network. Results of load monitoring and analysis verified that the developed workload index was effective from the viewpoint of the relative comparison of the workload.