• 제목/요약/키워드: 컨볼루션

검색결과 323건 처리시간 0.025초

컨볼루션 신경망을 이용한 고효율 비디오 부호화에서의 인-루프 필터 (CNN (Convolutional Neural Network) based in-loop filter in HEVC)

  • 박운성;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.369-372
    • /
    • 2016
  • 본 논문에서는 고효율 비디오 부호화에서 채택하고 있는 인-루프 필터 중 SAO (sample adaptive offset)를 컨볼루션 신경망으로 대체하여 부호화 효율을 향상시키는 방법을 제안한다. SAO 는 양자화 에러를 줄이기 위해 인코더에서 디코더로 적절한 오프셋 값을 전송한다. 제안하는 컨볼루션 신경망을 사용한 인-루프 필터는 인코더와 디코더가 같은 컨볼루션 신경망을 사용하여, 추가적인 비트를 디코더로 전송할 필요 없이 양자화 에러를 줄일 수 있다. 컨볼루션 신경망의 구조는 두 가지를 각각 사용하였고, 각 컨볼루션 신경망의 구조에 대해서 입력 영상과 원래 영상의 평균제곱오차에 따라 다른 모델을 적용하였다. 따라서 제안하는 방법을 HEVC에 적용하여 기존의 방법보다 더 적은 bit 로 더 좋은 화질의 영상을 얻어서 BD-rate 의 gain 을 얻을 수 있을 뿐만 아니라, 주관적인 화질의 비교에서도 더 좋은 결과를 보인다.

  • PDF

컨볼루션 신경망 기반 유해 네트워크 트래픽 탐지 기법 평가 (Assessing Convolutional Neural Network based Malicious Network Traffic Detection Methods)

  • 염성웅;뉘엔 반 퀴엣;김경백
    • KNOM Review
    • /
    • 제22권1호
    • /
    • pp.20-29
    • /
    • 2019
  • 최근 유해 네트워크 트래픽을 탐지하기 위해 머신러닝 기법을 활용하는 다양한 방법론들이 주목을 받고 있다. 이 논문에서는 컨볼루션 신경망 (Convolutioanl Neural Network)을 기반으로 유해 네트워크 트래픽을 분류하는 기법을 소개하고 그 성능을 평가한다. 이미지 처리에 강한 컨볼루션 신경망의 활용을 위해, 네트워크 트래픽의 주요 정보를 규격화된 이미지로 변환하는 방법을 제안하고, 변환된 이미지를 입력으로 컨볼루션 신경망을 학습시켜 유해 네트워크 트래픽의 분류를 수행하도록 한다. 실제 네트워크 트래픽 관련 데이터셋을 활용하여 이미지 변환 및 컨볼루션 신경망 기반 네트워크 트래픽 분류 기법의 성능을 검증하였다. 특히, 다양한 컨볼루션 신경망 기반 네트워크 모델 구성에 따른 트래픽 분류 기법의 성능을 평가하였다.

속도 영역에서의 컨볼루션을 이용한 효율적인 궤적 생성 방법 (Trajectory Generation Method with Convolution Operation on Velocity Profile)

  • 이건;김도익
    • 대한기계학회논문집A
    • /
    • 제38권3호
    • /
    • pp.283-288
    • /
    • 2014
  • 로봇에 대한 필요성이 더 이상 산업용 로봇에 국한되지 않고 서비스 로봇 혹은 의료 로봇으로 확대됨에 따라 사람과의 공존을 위해 외부 환경에 즉각적으로 대응이 가능한 궤적 생성 방법이 요구되고 있다. 이에 본 논문에서는 컨볼루션 연산을 이용한 실시간으로 변경 가능한 궤적 생성 방법을 제시한다. 본 논문에서 제시하는 방법은 기존의 컨볼루션 방법과 같이, 시스템의 운동학적 제약 조건 내에서의 궤적을 생성하며 기존 컨볼루션 방법의 모든 특성을 만족한다. 또한, 항상 사다리꼴 모양으로 궤적이 생성되는 특성으로 인한 특정 상황에서 비효율적으로 궤적이 생성될 수 있는 기존 컨볼루션 방법의 단점을 개선시키는 새로운 방법을 제시한다. 모의 실험을 통해 제안하는 방법의 유효성과 적합성을 보이며, 기존 컨볼루션 방법과의 비교를 통해 그 효율성을 보인다.

GPR B-scan 회색조 이미지의 싱크홀 특성추출 최적 컨볼루션 신경망 백본 연구 (A Study on the Optimal Convolution Neural Network Backbone for Sinkhole Feature Extraction of GPR B-scan Grayscale Images)

  • 박영훈
    • 대한토목학회논문집
    • /
    • 제44권3호
    • /
    • pp.385-396
    • /
    • 2024
  • GPR을 활용한 싱크홀 감지 정확도 강화를 위하여 본 연구에서는 GPR B-scan 회색조 이미지의 싱크홀 특성을 최적으로 추출할 수 있는 컨볼루션 신경망을 도출하였다. 사전 훈련된 컨볼루션 신경망이 바닐라 컨볼루션 신경망보다 2배 이상의 효용성을 가지는 것으로 평가되었다. 사전 훈련된 컨볼루션 신경망에 있어서 빠른 특성 추출이 특성 추출보다 낮은 과대적합을 발생시키는 것으로 나타났다. 아키텍처 종류와 시뮬레이션 조건에 따라 top-1 검증 정확도 크기와 발생 조건 및 연산 시간이 상이한 것으로 분석되어, 사전 훈련된 컨볼루션 신경망 중 InceptionV3가 GPR B-scan 회색조 이미지의 싱크홀 감지에 가장 강건한 것으로 평가되었다. Top-1 검증 정확도와 아키텍처 효율 지수를 동시에 고려할 경우 VGG19와 VGG16가 GPR B-scan 회색조 이미지의 싱크홀 특성 추출 백본으로 높은 효율성을 가지는 것으로 분석되었으며, GPR 장비에 탑재하여 실시간으로 싱크홀 특성 추출을 할 경우에는 MobileNetV3-Large 백본이 적합한 것으로 나타났다.

컨볼루션 부호를 적용한 산업용 무선 콘트롤러에 관한 연구 (A Study on the Radio Controller with Convolution Coding for Industry application)

  • 이규선;강병권;김선형
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.205-208
    • /
    • 2003
  • 본 논문에서는 현재 산업현장에서 사용되고 있는 유선 콘트롤러와 무선 콘트롤러의 문제점을 보완하기 위해 컨볼루션 부호와 CRC부호를 적용한 무선 콘트롤러를 구현하였다. 콘트롤러의 제어를 위해 마이크로프로세서를 이용하였으며, 송수신 프로그램에 컨볼루션 부호를 적용하였을 때와 적용하지 않았을 때의 각각의 경우에 데이터 수신율을 테스트하여 비교해 보았다. 무선 콘트롤러의 신뢰도 향상을 위해 적용한 컨볼루션 부호는 구속장 k=3, 부호율 1/2인 부호를 사용하였고, CRC 부호는 POLYNOMIAL함수를 /Χ$^{15}$ +Χ$^{2}$+1로 사용하여 총 CRC비트는 16비트(2바이트)가 되게 하였다.

  • PDF

사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용 (The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images)

  • 김정문;최지웅;권혁종;오래근;손수욱
    • 한국음향학회지
    • /
    • 제37권2호
    • /
    • pp.118-128
    • /
    • 2018
  • 본 논문은 사이드 스캔 소나 영상을 컨볼루션 신경망으로 학습하여 수중물체를 탐색하는 방법을 다루었다. 사이드 스캔 소나 영상을 사람이 직접 분석하던 방법에서 컨볼루션 신경망 알고리즘이 보강되면 분석의 효율성을 높일 수 있다. 연구에 사용한 사이드 스캔 소나의 영상 데이터는 미 해군 수상전센터에서 공개한 자료이고 4종류의 합성수중물체로 구성되었다. 컨볼루션 신경망 알고리즘은 관심영역 기반으로 학습하는 Faster R-CNN(Region based Convolutional Neural Networks)을 기본으로 하며 신경망의 세부사항을 보유한 데이터에 적합하도록 구성하였다. 연구의 결과를 정밀도-재현율 곡선으로 비교하였고 소나 영상 데이터에 지정한 관심영역의 변경이 탐지성능에 미치는 영향을 검토함으로써 컨볼루션 신경망의 수중물체 탐지 적용성에 대해 살펴보았다.

철근콘크리트 손상 특성 추출을 위한 최적 컨볼루션 신경망 백본 연구 (A Study on Optimal Convolutional Neural Networks Backbone for Reinforced Concrete Damage Feature Extraction)

  • 박영훈
    • 대한토목학회논문집
    • /
    • 제43권4호
    • /
    • pp.511-523
    • /
    • 2023
  • 철근콘크리트 손상 감지를 위한 무인항공기와 딥러닝 연계에 대한 연구가 활발히 진행 중이다. 컨볼루션 신경망은 객체 분류, 검출, 분할 모델의 백본으로 모델 성능에 높은 영향을 준다. 사전학습 컨볼루션 신경망인 모바일넷은 적은 연산량으로 충분한 정확도가 확보 될 수 있어 무인항공기 기반 실시간 손상 감지 백본으로 효율적이다. 바닐라 컨볼루션 신경망과 모바일넷을 분석 한 결과 모바일넷이 바닐라 컨볼루션 신경망의 15.9~22.9% 수준의 낮은 연산량으로도 6.0~9.0% 높은 검증 정확도를 가지는 것으로 평가되었다. 모바일넷V2, 모바일넷V3Large, 모바일넷 V3Small은 거의 동일한 최대 검증 정확도를 가지는 것으로 나타났으며 모바일넷의 철근콘트리트 손상 이미지 특성 추출 최적 조건은 옵티마이저 RMSprop, 드롭아웃 미적용, 평균풀링인 것으로 분석되었다. 본 연구에서 도출된 모바일넷V2 기반 7가지 손상 감지 최대 검증 정확도 75.49%는 이미지 축적과 지속적 학습으로 향상 될 수 있다.

Real-time Segmentation of Black Ice Region in Infrared Road Images

  • Li, Yu-Jie;Kang, Sun-Kyoung;Jung, Sung-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권2호
    • /
    • pp.33-42
    • /
    • 2022
  • 본 논문에서는 운전자한테 실시간으로 블랙 아이스 경고를 보내기 위해서 도로 영상에서 블랙 아이스 영역 분할을 위한 다중 척도 팽창 컨볼루션 특징 융합에 기반한 딥러닝 모델을 제안한다. 제안한 다중척도 팽창 컨볼루션 특징 융합 네트워크는 인코더 블록에 서로 다른 팽창 비율 컨볼루션을 병렬로 추가하고, 서로 다른 해상도 특징 맵에서 서로 다른 팽창 비율을 설정하고, 다중 단계 특징 정보가 함께 융합된다. 다중 척도 팽창 컨볼루션 특징 융합은 수용 영역을 확장함과 동시에 공간의 세부 정보를 잘 보존하고 팽창 컨볼루션의 효과성을 높임으로써 기존 모델보다 성능을 향상시킨다. 실험 결과를 통해 본 논문 제안한 네트워크 모델은 병렬 평창 컨볼루션 수가 증가함에 따라 성능이 향상되는 것을 알 수 있었다. 제안한 방법의 mIoU 값은 96.46%로 U-Net, FCN, PSPNet, ENet, LinkNet 등 기존 네트워크보다 높았다. 그리고 파라미터는 1,858K개로, 기존 LinkNet모델보다 6배로 축소하였다. Jetson Nano에서 실험 결과 보면, 제안한 방법의 FPS는 3.63로 실시간으로 블랙 아이스 영역을 실시간으로 분할 할 수 있었다.

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권3호
    • /
    • pp.25-33
    • /
    • 2023
  • CT 영상의 획득 및 전송 등의 과정에서 발생하는 잡음은 영상의 질을 저하시키는 요소로 작용한다. 따라서 이를 해결하기 위한 잡음제거는 영상처리에서 중요한 전처리 과정이다. 본 논문에서는 딥러닝의 convolutional autoencoder (CAE) 모형에서 기존 컨볼루션 연산 대신 deformable 컨볼루션 연산을 적용한 deformable convolutional autoencoder (DeCAE) 모형을 이용하여 잡음을 제거하고자 한다. 여기서 deformable 컨볼루션 연산은 기존 컨볼루션 연산보다 유연한 영역에서 영상의 특징들을 추출할 수 있다. 제안된 DeCAE 모형은 기존 CAE 모형과 같은 인코더-디코더 구조로 되어있으나 효율적인 잡음제거를 위해 인코더는 deformable 컨볼루션 층으로 구성하고, 디코더는 기존 컨볼루션 층으로 구성하였다. 본 논문에서 제안된 DeCAE 모형의 성능 평가를 위해 다양한 잡음, 즉, 가우시안 잡음, 임펄스 잡음 그리고 포아송 잡음에 의해 훼손된 CT 영상을 대상으로 실험하였다. 성능 실험 결과, DeCAE 모형은 전통적인 필터 즉, Mean 필터, Median 필터와 이를 개선한 Bilateral 필터, NL-means 방법 뿐만 아니라 기존의 CAE 모형보다 정성적이고, 정량적인 척도 즉, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) 그리고 SSIM (Structural Similarity Index Measure) 면에서 우수한 결과를 보였다.

컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식 (Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning)

  • 강은철;한영태;오일석
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제24권1호
    • /
    • pp.53-57
    • /
    • 2018
  • 독버섯 중독 사건이 종종 발생한다. 본 논문은 딥러닝 기술을 활용한 버섯 인식 시스템을 제안한다. 딥러닝 기법 중 하나인 컨볼루션 신경망을 사용하였다. 컨볼루션 신경망을 학습하기 위해 이미지 크롤링을 이용하여 38종의 버섯에 대해 1478장의 영상을 수집하였다. 수집한 데이터셋을 가지고 AlexNet, VGGNet, GoogLeNet을 비교 실험하였으며, 클래스 수 확장에 따른 비교 실험, 전이 학습을 사용한 비교실험을 하였다. 실험 결과 1순위 정확도는 82.63%, 5순위 정확도는 96.84%라는 성능을 얻었다.