• Title/Summary/Keyword: 커튼월-파일 방파제

Search Result 5, Processing Time 0.017 seconds

Reflection and Transmission of Regular Waves by Multiple-Row Curtainwall-Pile Breakwaters (다열 커튼월-파일 방파제에 의한 규칙파의 반사 및 투과)

  • Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.97-111
    • /
    • 2006
  • Using the eigenfunction expansion method, a mathematical model has been developed to calculate the reflection and transmission of regular waves from a multiple-row curtainwall-pile breakwater. In addition, hydraulic model experiments have been conducted with different values of porosities between the piles, drafts of the curtain walls, and distances between the rows of the breakwater. It is found that the reflection and transmission coefficients decrease and increase, respectively, with decreasing relative water depth, but they bounce to increase and decrease, respectively, as the relative water depth decreases further. When either the porosity between the piles or the draft of the curtain wall is changed with other parameters fixed, the relative magnitudes of the reflection and transmission coefficients have been changed, but the general trend remained the same. When the wavelength is the same as the distance between the rows of the breakwater, a rapid change was observed for the reflection and transmission coefficients. A good agreement between the measurement and prediction was also founded for three-row breakwaters.

Scattering Wave Spectrum by a Pile Breakwater in Directional Irregular Waves (다방향 불규칙 파랑중 파일 방파제에 의한 산란파 스펙트럼)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.586-595
    • /
    • 2007
  • The analytic solution of wave scattering of monochromatic waves on a pile breakwater by an eigenfunction expansion method is extended to the case of directional irregular waves. The scattering wave spectrum and the force spectrum can be expressed from the reflection coefficient, transmission coefficient and the wave forces obtained from changing frequencies and incident angles in monochromatic waves. By numerical integration of 2-dimensional spectrum which is function of frequencies and incident angles, the representative values for the scattered waves and wave forces are obtained and the dependence of the transmission coefficients and wave forces on the directional distribution function, the principal wave direction, the submergence depth, and porosity is analyzed.

Estimation of Friction Coefficient in Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수 매개변수의 마찰계수 산정)

  • Kim, Yeul-Woo;Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • The matching condition at a perforated wall with vertical slits involves the permeability parameter, which can be calculated by two different methods. One expresses the permeability parameter in terms of energy dissipation coefficient and jet length at the perforated wall, being advantageous in that all the related variables are known, but it gives wrong result in the limit of long waves. The other expresses the permeability parameter in terms of friction coefficient and inertia coefficient, giving correct result from short to long waves, but the friction coefficient should be determined on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of a curtain-wall-pile breakwater, the upper part of which is a curtain wall and the lower part consisting of a perforated wall with vertical slits. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula.