• Title/Summary/Keyword: 커먼레일 연료분사

Search Result 64, Processing Time 0.082 seconds

An Investigation on the Spray Characteristics of DME Common Rail Fuel Injection System with Variation of Ambient Pressure (분위기 압력변화에 따른 DME 커먼레일 연료 분사 시스템의 분무 특성에 관한 연구)

  • Lee, Se-Jun;Oh, Se-Doo;Jeong, Soo-Jin;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.90-97
    • /
    • 2012
  • It is investigated of the DME spray characteristics about varied ambient pressure and fuel injection pressure using the common rail fuel injection system when the nozzle holes diameter is varied. The common rail fuel injection system and fuel cooling system is used since DME has compressibility and vaporization in atmospheric temperature. The fuel injection quantity and spray characteristics were measured. The spray was analyzed of spray shape, penetration length, and spray angle at the six nozzle holes. The 2 types injector were used, the one was 0.166 mm diameter the other one was 0.250 mm diameter. The ambient pressure which is based on gage pressure was 0 MPa, 2.5 MPa, and 5 MPa. The fuel injection pressure was varied by 5 MPa from 35 MPa to 70 MPa. When using the converted injector, compared to using the common injector, the DME injection quantity was increased 127 % but it didn't have the same heat release. Both of the common and converted injector had symmetric spray shapes. In case of converted injector, there were asymmetrical spray shapes until 1.2 ms, but after 1.2 ms the spray shape was symmetrical. Compared with the common and converted injector, the converted injector had shorter penetration length and wider spray angle than the common injector.

Research on the Injection Condition Calibration Process of a Common-rail DME Fueled Engine (4기통 커먼레일 DME 엔진의 분사조건 보정방법에 대한 연구)

  • Chung, Jae-Woo;Kang, Jung-Ho;Kim, Nam-Ho;Jeong, Soo-Jin;Lee, Ho-Gil;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.147-156
    • /
    • 2008
  • As the management of fuel efficiency becomes globally reinforced in attempts to find an environment-friendly vehicle that will operate against global warming, the interest in and the demand for the type of vehicle with a high-efficiency diesel engine using light oil. However, it also emits a greater amount of PM (particulate matter) and NOx than emissions from vehicles using other types of fuels. Therefore, the DME (Dimethyl Ether), an oxygen containing fuel draws attention as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But to develop and compare performance of an electric controlled common-rail DME engine, engine tests requires optimized injection conditions at required engine RPM and engine torque. These injection conditions cannot be set freely and the data configuration through the experimentally repeated application requires much time as well as a significant amount of errors and effort. The object of this study is to configure the basic injection map using the results of the DME engine experiments performed so far. For this, in this study, the functionalization of the required equations were performed along with the basic review of the factors that had influence on the data map. Through this, the information on the injection pressure, injection amount, injection duration, injection timing, etc. under certain operation condition could be obtained.

A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber (정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구)

  • Jeon, Chung-Hwan;Jeong, Jeong-Hoon;Kim, Hyun-Kyu;Song, Ju-Hun;Chang, Young-June
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • The aim of this investigation was study on the non-evaporation diesel spray characteristics injected through a common-rail diesel injector under various ambient pressure. The diesel spray was investigated with observation of macroscopic characteristics such as spray tip penetration and spray cone angle by the shadowgraph and the image processing method. The numerical study was conducted using a computational fluid dynamics code, AVL-FIRE. The breakup models used were WAVE model and standard $k-{\varepsilon}$ turbulence model was applied. The numerical study used input data which spray cone angle and fuel injection rate was achieved by Zeuch's method. Comparison with experimental result such as spray tip penetration was good agreement. Distribution of droplet diameter were conducted on four planes where the axial distances were 5, 15, 39 and 49mm respectively downstream from the orifice exit.

Experimental Investigation of Nano-sized Particulate Matter Emission Characteristics under Engine Operating Conditions from Common Rail Diesel Engine (커먼레일 디젤엔진의 운전조건이 나노크기 입자상 물질 배출특성에 미치는 영향에 관한 실험적 연구)

  • Lee, Hyung-Min;Myung, Cha-Lee;Park, Sim-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • The objective of this work presented here was experimental study of steadystate and cold start exhaust nano-sized particle characteristics from common rail diesel engine. The effect of the diesel oxidation catalyst (DOC) on the particle number reduction was insignificant, however, particle number concentration levels were reduced by 3 orders of magnitude into the downstream of diesel particulate filter (DPF). In high speed and load conditions, natural regeneration of trapped particle occurred inside DPF and it was referable to increase particle number concentration. As fuel injection timing was shifted BTDC $6^{\circ}CA$ to ATDC $4^{\circ}CA$, particle number concentration level was slightly reduced, however particle number and size was increased at ATDC $9^{\circ}CA$. Nucleation type particle reduced and accumulation type particle was increased on EGR condition.

Experimental and Numerical Analysis of DME Spray Characteristics in Common-rail Fuel System (커먼레일 연료시스템에서의 DME 분무 특성에 대한 실험과 해석적 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Lee, Sang-In;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1151-1159
    • /
    • 2012
  • Spray visualization and computer simulation of a DME injector have been conducted to investigate the enlarged injection hole diameter effect. To increase the reliability of the computational result, simulation results have been compared with the visualization test results, and the behaviors of a DME spray under various high-pressure and -temperature conditions have been computed. This study shows a discrepancy of 3.57% between the experimental and the computational results of penetration length for an injection pressure of 35 MPa and ambient pressure of 5 MPa. When simulating the engine conditions, the maximum penetration length of a fully developed DME spray is 42 mm when the temperature to pressure ratio is 300 K/MPa. The DME spray behavior is dominantly affected by the ambient pressure under the condition that the ratio is less than 300 K/MPa, and by the ambient temperature under the condition that the ratio is more than 300 K/MPa.

Study on Performance and Emission Characteristics of CNG/Diesel Dual-Fuel Engine (CNG/Diesel 이종연료용 엔진의 성능 및 배출가스 특성에 대한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.869-874
    • /
    • 2011
  • In a CNG/diesel dual-fuel engine, CNG is used as the main fuel and a small amount of diesel is injected into the cylinder to provide ignition priming. In this study, a remodeling of the existing diesel engine into a CNG/diesel dual-fuel engine is proposed. In this engine, diesel is injected at a high pressure by common rail direct injection (CRDI) and CNG is injected at the intake port for premixing. The CNG/diesel dual-fuel engine had an equally satisfactory coordinate torque and power as the conventional diesel engine. Moreover, the CNG alternation rate is over 89% throughout the operating range of the CNG/diesel dual-fuel engine. PM emission by the dual-fuel engine is 94% lower than that by the diesel engine; however, NOx emission by the dual-fuel engine is higher than that by the diesel engine.

A Study on Spray Behavior of DME-LPG Blended Fuels in a Common-rail Injection System (커먼레일 분사 시스템에서 DME-LPG 혼합연료의 분무거동에 관한 연구)

  • Kim, W.I.;Woo, S.C.;Lee, C.S.;Lee, K.H.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • This study is to investigate the spray behavior of DME-LPG blended fuels in common rail injection system for diesel engines. The visualization experiment was performed to analyze the macroscopic spray behavior of test fuels. In addition, the experiment using BOS(Background Oriented Schlieren) method is performed to compare liquid phase and gas phase. The test fuels are injected in high pressure chamber. The ambient pressure of high pressure chamber was formed by nitrogen gas. Spray tip penetration, spray cone angle and spray area were measured using high speed camera. SMD(Sauter Mean Diameter) and spray particle velocity were measured using the PDPA(Phase Doppler Particle Analyzer) system to analyze the microscopic properties of test fuels. The results of this experiment showed that spray tip penetration, spray cone angle and spray area of DME-LPG fuels are similar to those of DME fuel. When compared to results of experiment using BOS, significant differences of spray tip penetrations, spray cone angle and spray area are showed because of gas phase. The results of experiment using BOS method showed higher values. SMD of DME-LPG blended fuels is smaller than that of DME fuel. Velocity of DME-LPG blended fuels is faster than that of DME fuel.

Characteristics of High Pressure Bio-diesel Fuel Spray (바이오 디젤 연료의 고압 분무 특성)

  • Hong, Chang-Ho;Choi, Wook;Choi, Byung-Chul;Lee, Gi-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • Spray characteristics of conventional diesel fuel and bio-diesel fuel(methyl-ester of soybean oil) were compared, in terms of spray tip penetration and spray angle, by using a commercial high pressure common rail injection system for light-duty DI Diesel engines. The experiments were carried out under the non-evaporating condition at ambient density(8.8, $15.6 kg/\textrm{m}^3$) and injection pressure(75, 135 MPa). The experimental method was based on a laser sheet scattering technique. Spray tip penetrations of bio-diesel fuel were longer, on the whole, than those of conventional diesel fuel, except for lower injection pressure(75 MPa) under lower ambient density$(8.8 kg/\textrm{m}^3)$. But spray near angle and spray far angle of bio-diesel fuel were smaller than those of conventional diesel fuel, implying spray angle is related to the growth rate of spray tip penetration. The experimental results of spray tip penetration agreed well with the calculated values by the Wakuri et al.'s correlation based on the momentum theory.

A Study on the DME Application Performance of a High Pressure Fuel Pump for an Electric Controlled Common-rail Compression Ignition Engine (전자제어 커먼레일 압축착화엔진용 고압연료펌프의 DME 적용 성능에 관한 연구)

  • Chung, Jae-Woo;Kim, Nam-Ho;Kang, Jung-Ho;Park, Sang-Wook;Lee, Ho-Kil;Choi, Seung-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.132-140
    • /
    • 2009
  • Recently, the interest in the development of high efficiency Diesel engine technology using alternative fuel has been on the rise and related studies are being performed. Therefore, the DME(Dimethyl Ether), an oxygen containing fuel as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But it is unavoidable that the modification of a fuel supply system in an engine to application of the DME fuel because of DME fuel properties. So, in this study, a DME high pressure pump for a common-rail fuel supply system has been composed and the test results of the pump have been presented. As the results of the tests, it is confirmed that DME pump inlet pressure, pump speed and common-rail pressure effects on the volumetric efficiencies of the pump. Finally, it is defined that the optimum plunger volume of a DME pump has to be extended to the minimum 150% compared to a Diesel pump plunger volume considering DME fuel properties and volumetric efficiencies characteristics at same specifications of the high pressure pump.

Effects of the Fuel Injection Timing on the Combustion Characteristics in CRDI Diesel Engine (CRDI 디젤엔진의 연료분사기기가 연소특성에 미치는 영향)

  • Kim, J.S.;Kim, K.H.;Lee, H.S.;Lim, S.W.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.10-15
    • /
    • 2011
  • This paper describes the engine performance and combustion characteristics of a CRDI diesel engine, operated by electronically controlled diesel fuel injector with variable injection timing. This experiment focused on fuel injection timing and pressure about combustion characteristics of CRDI diesel engine. EGR was excepted because it would be furtherly analyzed with additional experiments. The experiment was conducted under the circumstance of engine torque for 4, 8, 12 and 16 kgf-m and fuel injection timing for $15^{\circ}$, $10^{\circ}$ and $5^{\circ}$ BTDC, at the engine speed of 1100, 1400, 1700 and 2000 rpm. Fuel injection was controlled to retard or advance initiation of the injection event by electronically controlled fuel injection unit injector on the personal computer. When fuel was injected into the cylinders of a CRDI diesel engine it would go through ignition delay before starting of combustion. Therefore, fuel injection timing of CRDI diesel engine had a significant effect upon performance and combustion characteristics. Depending on the injection timing the fuel consumption rate following the rotational speed and torque was 3~78 g/psh (1.7~30.6%). The range of fuel injection timing that resulted in low fuel consumption overall was BTDC 15-10 degrees.