Dong-Hyeok Seo;Min-Seong Ko;Seung-Hak Lee;Jong-Hyuk Park
KIPS Transactions on Software and Data Engineering
/
v.13
no.1
/
pp.17-27
/
2024
Video frame interpolation is an important technique used in the field of video and media, as it increases the continuity of motion and enables smooth playback of videos. In the study of video frame interpolation using deep learning, Kernel Based Method captures local changes well, but has limitations in handling global changes. In this paper, we propose a new U-Net structure that applies feature map differentiation and two directions to focus on capturing major changes to generate intermediate frames more accurately while reducing the number of parameters. Experimental results show that the proposed structure outperforms the existing model by up to 0.3 in PSNR with about 61% fewer parameters on common datasets such as Vimeo, Middle-burry, and a new YouTube dataset. Code is available at https://github.com/Go-MinSeong/SF-AdaCoF.
Recently, one of the most actively applied image media in the most fields such as virtual reality (VR) is omni-directional or panorama image. This image is generated by stitching images obtained by various methods. In this process, it takes the most time to extract keypoints necessary for stitching. In this paper, we analyze the parameters involved in the extraction of SIFT keypoints with the aim of reducing the computation time for extracting the most widely used SIFT keypoints. The parameters considered in this paper are the initial standard deviation of the Gaussian kernel used for Gaussian filtering, the number of gaussian difference image sets for extracting local extrema, and the number of octaves. As the SIFT algorithm, the Lowe scheme, the originally proposed one, and the Hess scheme which is a convolution cascade scheme, are considered. First, the effect of each parameter value on the computation time is analyzed, and the effect of each parameter on the stitching performance is analyzed by performing actual stitching experiments. Finally, based on the results of the two analyses, we extract parameter value set that minimize computation time without degrading.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.5
/
pp.380-386
/
2022
This paper proposes a method for structuring the preprocessing process of a training image when color is applied using Pix2Pix, one of the adversarial generative neural network techniques. This paper concentrate on the prediction result can be damaged according to the degree of light reflection of the training image. Therefore, image preprocesisng and parameters for model optimization were configured before model application. In order to increase the image resolution of training and prediction results, it is necessary to modify the of the model so this part is designed to be tuned with parameters. In addition, in this paper, the logic that processes only the part where the prediction result is damaged by light reflection is configured together, and the pre-processing logic that does not distort the prediction result is also configured.Therefore, in order to improve the usability, the accuracy was improved through experiments on the part that applies the light reflection tuning filter to the training image of the Pix2Pix model and the parameter configuration.
Journal of the Computational Structural Engineering Institute of Korea
/
v.32
no.1
/
pp.55-63
/
2019
In engineering problems, many random variables have correlation, and the correlation of input random variables has a great influence on reliability analysis results of the mechanical systems. However, correlated variables are often treated as independent variables or modeled by specific parametric joint distributions due to difficulty in modeling joint distributions. Especially, when there are insufficient correlated data, it becomes more difficult to correctly model the joint distribution. In this study, multivariate kernel density estimation with bounded data is proposed to estimate various types of joint distributions with highly nonlinearity. Since it combines given data with bounded data, which are generated from confidence intervals of uniform distribution parameters for given data, it is less sensitive to data quality and number of data. Thus, it yields conservative statistical modeling and reliability analysis results, and its performance is verified through statistical simulation and engineering examples.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.10
/
pp.2425-2430
/
2013
This paper presents an shifted linear interpolation method with an image-dependent parameter. The previous shifted linear interpolation proposed the optimal shift parameter of 0.21, which is calculated by spectrum analysis of the shifted linear interpolation kernel. However, the parameter can be different if we takes an input image spectrum into account. Thus, we introduce an image-dependent parameter. An experiment shows the best shift parameter is 0.19 in average for real images. Also, simulation results indicate the proposed method is superior to the existing shifted linear interpolation as well as conventional methods such as linear interpolation and cubic convolution interpolation in terms of the subjective and objective image quality.
In this paper, SVM-based speaker classification is experimented with GMM-supervector. To create a speaker cluster, conventional speaker change detection is performed with the KL distance using the SNR-based weighting function. SVM-based speaker classification consists of two steps. In the first step, SVM-based classification between UBM and speaker models is performed, speaker information is indexed in each cluster, and then grouped by speaker. In the second step, the SVM-based classification between UBM and speaker models is performed by inputting the speaker cluster group. Linear and RBF are applied as kernel functions for SVM-based classification. As a result, in the first step, the case of applying the linear kernel showed better performance than RBF with 148 speaker clusters, MDR 0, FAR 47.3, and ER 50.7. The second step experiment result also showed the best performance with 109 speaker clusters, MDR 1.3, FAR 28.4, and ER 32.1 when the linear kernel was applied.
Seo, Young-Ho;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.11a
/
pp.302-303
/
2010
본 논문에서는 고속으로 홀로그램을 생성하기 위해 새로운 컴퓨터 생성 홀로그램(computer-generated hologram, CGH) 수식을 제안하고, 셀 기반의 VLSI(very large scale integrated circuit) 구조를 제안하였다. 기본 CGH 수식에서 가로 또는 세로 방향의 연산 규칙을 찾아낸 후 가로 또는 세로 방향의 홀로그램 화소를 병렬적으로 구할 수 있는 수식을 유도하였다. 제안한 수식을 바탕으로 초기 파라미터 연산기(initial parameter calculator)와 업데이트-위상 연산기(update-phase calculator)로 구성된 CGH 셀의 구조를 제안하고 하드웨어로 구현하였다. 수식의 변형을 통해서 하드웨어를 간략화 시킬 수 있었고, CGH의 확장을 통해 가로 방향으로 병렬화시킬 수 있는 하드웨어 구조도 보였다. 실험에서는 하드웨어에 사용된 자원을 분석하였다. CGH 커널과 프로세서의 구조는 이전 연구에서 사용된 플랫폼을 그대로 사용하였다.
Kim, Ki-Sang;Jin, Yong-Ha;Oh, Sung-Kwun;Kim, Hyun-Ki
Proceedings of the IEEK Conference
/
2009.05a
/
pp.261-263
/
2009
본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 각 노드의 후반부 파라미터들은 최소자승법을 이용하여 최적화 하였다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.
본 논문은 상대적으로 새로운 기법인 Parzen Density Estimation과 Multi-class SVM을 이용한 지능형 고장 탐색과 진단 방법을 제안하고 있다. 본 연구에서는 롤링 베어링을 대상으로 고장을 탐색하고 진단하기 위한 방법을 제안하는데 Parzen Density Estimation과 Multi-class SVM은 고장 클래스를 잘 표현할 수 있다. Parzen Density Estimation은 새로운 패턴 데이터의 거절과 알려진 데이터 패턴의 밀도의 평가에 의해 새로운 패턴을 찾아낼 수 있고, Multi-class SVM 기반의 방법은 여러 클래스의 고장을 support vector로 표현하여 고장 패턴을 찾아낼 수 있다. 본 연구에서는 실제의 다중 클래스를 가지는 롤링 베어링의 고장 데이터를 사용하여 고장 패턴을 탐색하는 과정을 보여주는데, 커널함수의 적절한 파라미터의 선택에 의한 Multi-class SVM 기반의 방법이 multi-layer perceptron이나 Parzen Density Estimation 방법보다 우수함을 입증한다.
본 논문에서는 커널 모드에서 악성 봇이 호스트를 전염 시키는 순간 나타나는 일반적인 행동 특성들을 기반으로 효과적인 악성 봇 탐지가 가능한 프로그램을 구현하였다. 구현된 프로그램은 false-positive(오탐지)를 줄이기 위해서 악성 봇의 전염 과정에서 발생하는 복제 행동, 레지스트리 등록, uninstall 등록, 복제된 파일의 경로 정보 그리고 사용할 API 임포트 정보 등과 같은 악성 행위 탐지 기준 6가지를 고려한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.