• Title/Summary/Keyword: 커널분위수회귀

Search Result 6, Processing Time 0.018 seconds

Quantile regression using asymmetric Laplace distribution (비대칭 라플라스 분포를 이용한 분위수 회귀)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1093-1101
    • /
    • 2009
  • Quantile regression has become a more widely used technique to describe the distribution of a response variable given a set of explanatory variables. This paper proposes a novel modelfor quantile regression using doubly penalized kernel machine with support vector machine iteratively reweighted least squares (SVM-IRWLS). To make inference about the shape of a population distribution, the widely popularregression, would be inadequate, if the distribution is not approximately Gaussian. We present a likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace density.

  • PDF

M-quantile kernel regression for small area estimation (소지역 추정을 위한 M-분위수 커널회귀)

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.749-756
    • /
    • 2012
  • An approach widely used for small area estimation is based on linear mixed models. However, when the functional form of the relationship between the response and the input variables is not linear, it may lead to biased estimators of the small area parameters. In this paper we propose M-quantile kernel regression for small area mean estimation allowing nonlinearities in the relationship between the response and the input variables. Numerical studies are presented that show the sample properties of the proposed estimation method.

Divide and conquer kernel quantile regression for massive dataset (대용량 자료의 분석을 위한 분할정복 커널 분위수 회귀모형)

  • Bang, Sungwan;Kim, Jaeoh
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.569-578
    • /
    • 2020
  • By estimating conditional quantile functions of the response, quantile regression (QR) can provide comprehensive information of the relationship between the response and the predictors. In addition, kernel quantile regression (KQR) estimates a nonlinear conditional quantile function in reproducing kernel Hilbert spaces generated by a positive definite kernel function. However, it is infeasible to use the KQR in analysing a massive data due to the limitations of computer primary memory. We propose a divide and conquer based KQR (DC-KQR) method to overcome such a limitation. The proposed DC-KQR divides the entire data into a few subsets, then applies the KQR onto each subsets and derives a final estimator by aggregating all results from subsets. Simulation studies are presented to demonstrate the satisfactory performance of the proposed method.

Stepwise Estimation for Multiple Non-Crossing Quantile Regression using Kernel Constraints (커널 제약식을 이용한 다중 비교차 분위수 함수의 순차적 추정법)

  • Bang, Sungwan;Jhun, Myoungshic;Cho, HyungJun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.915-922
    • /
    • 2013
  • Quantile regression can estimate multiple conditional quantile functions of the response, and as a result, it provide comprehensive information of the relationship between the response and the predictors. However, when estimating several conditional quantile functions separately, two or more estimated quantile functions may cross or overlap and consequently violate the basic properties of quantiles. In this paper, we propose a new stepwise method to estimate multiple non-crossing quantile functions using constraints on the kernel coefficients. A simulation study are presented to demonstrate satisfactory performance of the proposed method.

Selection of bandwidth for local linear composite quantile regression smoothing (국소 선형 복합 분위수 회귀에서의 평활계수 선택)

  • Jhun, Myoungshic;Kang, Jongkyeong;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.733-745
    • /
    • 2017
  • Local composite quantile regression is a useful non-parametric regression method widely used for its high efficiency. Data smoothing methods using kernel are typically used in the estimation process with performances that rely largely on the smoothing parameter rather than the kernel. However, $L_2$-norm is generally used as criterion to estimate the performance of the regression function. In addition, many studies have been conducted on the selection of smoothing parameters that minimize mean square error (MSE) or mean integrated square error (MISE). In this paper, we explored the optimality of selecting smoothing parameters that determine the performance of non-parametric regression models using local linear composite quantile regression. As evaluation criteria for the choice of smoothing parameter, we used mean absolute error (MAE) and mean integrated absolute error (MIAE), which have not been researched extensively due to mathematical difficulties. We proved the uniqueness of the optimal smoothing parameter based on MAE and MIAE. Furthermore, we compared the optimal smoothing parameter based on the proposed criteria (MAE and MIAE) with existing criteria (MSE and MISE). In this process, the properties of the proposed method were investigated through simulation studies in various situations.

Real-time private consumption prediction using big data (빅데이터를 이용한 실시간 민간소비 예측)

  • Seung Jun Shin;Beomseok Seo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.13-38
    • /
    • 2024
  • As economic uncertainties have increased recently due to COVID-19, there is a growing need to quickly grasp private consumption trends that directly reflect the economic situation of private economic entities. This study proposes a method of estimating private consumption in real-time by comprehensively utilizing big data as well as existing macroeconomic indicators. In particular, it is intended to improve the accuracy of private consumption estimation by comparing and analyzing various machine learning methods that are capable of fitting ultra-high-dimensional big data. As a result of the empirical analysis, it has been demonstrated that when the number of covariates including big data is large, variables can be selected in advance and used for model fit to improve private consumption prediction performance. In addition, as the inclusion of big data greatly improves the predictive performance of private consumption after COVID-19, the benefit of big data that reflects new information in a timely manner has been shown to increase when economic uncertainty is high.