• Title/Summary/Keyword: 캡슐화

Search Result 362, Processing Time 0.026 seconds

A Study on the Encapsulation of Cosmetic Oil Using Computational Fluid Dynamics (전산유체역학을 이용한 화장품 오일 캡슐레이션 현상에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.638-643
    • /
    • 2021
  • Oil is used in various industries, including the agricultural sector, food industry, and functional cosmetics. These oils are chemically unstable and prone to oxidation when exposed to oxygen, light, moisture, or high temperatures. Therefore, various attempts have been made to encapsulate them so that they are not exposed to such environments. When oil is injected into a refrigerant with greater density, the oil can be encapsulated as it rises due to buoyancy caused by the density difference. In this study, oil encapsulation was simulated to find the optimal conditions for operating equipment using computational fluid dynamics (CFD) for multiphase flows. Water or serum can be used as a refrigerant. The viscosity of water is relatively small, and if it is used as a refrigerant, oil droplets can be produced well even if oil and water are continuously injected in the equipment. However, the viscosity of serum is very high, and if it is used, the oil is stretched out and does not leave the nozzle. The results show that when using serum as a cooling medium, oil encapsulation is possible if the injection is stopped for some time after instantaneous injection at high speed.

Characteristics of Glycyrrhiza uralensis extract-loaded chitosan nanocapsules and their antioxidant activity (감초 추출물 함유 키토산 나노캡슐의 특성 및 항산화 활성)

  • Kim, Min Jung;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.479-485
    • /
    • 2021
  • To improve the oxidative stability of Glycyrrhiza uralensis extract (GU), GU extraction conditions were optimized for maximal antioxidant activity, and GU-loaded nanocapsules were prepared by chitosan ionic gelation. The optimized ethanol concentration and extraction time were 83.0% and 32.6 min, respectively, using response surface methodology. The particle size of the GU-loaded nanocapsules ranged from 280 to 370 nm. A GU extract of 0.8 mg/mL and chitosan concentration of 2.0 mg/mL were selected as the optimal conditions for entrapment and loading efficiency. Both free GU and GU-loaded chitosan nanocapsules exhibited concentration-dependent antioxidant activity. However, the antioxidant protection factor of GU was effectively maintained when it was entrapped within the chitosan nanocapsules. In conclusion, chitosan nanoencapsulation is a potentially valuable technique for improving the oxidative stability of GU.

Optimization of Conditions for the Microencapsulation of ${\alpha}-Tocopherol$ and Its Storage Stability (${\alpha}-Tocopherol$ 미세캡슐화의 최적화 및 저장안정성 규명)

  • Chang, Pahn-Shick;Ha, Jae-Seok;Roh, Hoe-Jin;Choi, Jin-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.843-850
    • /
    • 2000
  • We have produced the microcapsule composed of ${\alpha}-tocopherol$ as a core material (Cm) and the gelatinized polysaccharide as a wall material (Wm). Firstly, we have developed a simple, sensitive, and quantitative analysis method of the microencapsulation product using 5% cupric acetate pyridine solution. We could then optimize all the conditions for the microencapsulation process such as the ratio of [Cm] to [Wm], the temperature of dispersion fluid, and the emulsifier concentration using response surface methodology (RSM). As for the microencapsulation of ${\alpha}-tocopherol$, the regression model equation for the yield of microencapsulation (YM, %) to the change of an independent variable could be predicted as follows : YM=99.77-1.76([Cm]:[Wm])-1.72$([Cm]\;:\;[Wm])^2$. From the ridge of maximum response, the optimum conditions for the microencapsulation of ${\alpha}-tocopherol$ were able to be determined as the ratio of [Cm] to [Wm] of 4.6:5.4(w/w), the emulsifier concentration of 0.49%, and dispersion fluid temperature of $25.5^{\circ}C$, respectively. Finally, the microcapsules produced under the optimal conditions were applied for the analysis of storage stability. The optimal conditions for the storage were found to be the values of pH 9.0 and $25{\sim}35^{\circ}C$. And the storage stability of the microcapsules containing ${\alpha}-tocopherol$ were higher than 99% for a week at pH 9.0 and $25^{\circ}C$.

  • PDF

Preparation of Fragrant Microcapsule for Reducing Stress (긴장완화를 위한 향기나는 마이크로캡슐의 제조)

  • Kim, Yoon A;Kim, So Hyun;Park, Ji Su;Lee, Da Som;Kim, Jin Gon;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • A fragrant microcapsule was prepared for use by students to reduce the stress of taking examinations. Rosmarinic acid was used as a fragrant oil which had the effect of relaxing stress, polycaprolactone (PCL) was used as a capsule wall material, and poly(vinyl alcohol) (PVA) as a stabilizer. The solvent evaporation method was used to form the microcapsule. The microcapsules were prepared by changing the stirring rate, the concentration of the stabilizer, and the molecular weight of PCL. The shape of the microcapsule was characterized by scanning electron microscopy (SEM). The size of the microcapsule was reduced by increasing the stirring speed. The release rate of rosmarinic acid was decreased when the higher molecular weight PCL was used. When the prepared microcapsule was tested in an aromatherapy class, the microencapsulated fragrant oil had a longer release time than the original fragrant oil. The study data showed that this fragrant oil was effective for increasing concentration ability, reducing stress, increasing digestive power, and increasing memory for the students.

Preparation and Characterization of Functional Microcapsules Containing Suspensions of Conducting Materials (전도성 물질 서스펜션을 함유한 마이크로캡슐)

  • Ihm, DaeWoo;Kwon, Won Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Microcapsules containing the suspension of conducting materials such as carbon nanotube (CNT) or polyaniline (PANI) were prepared by in-situ polymerization of melamine and formaldehyde. Stable microcapsules were prepared and the mean diameter of the observed microcapsules was in the range of $10-20{\mu}m$. The surface morphology and chemical structure of microcapsules were investigated using optical microscope (OM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). The thermal properties of samples were investigated by thermogravimetric analysis (TGA). The conductivity of ruptured microcapsule containing the suspension of CNTs or PANIs in tetrachloroethylene and Isopar-G was measured. As the amount of CNTs and PANIs in the core of microcapsules increased, the measured current increased. Conductivity measurement results suggest that poly (melamine-formaldehyde) based core-shell microcapsules could be applied to self-healing electronic materials systems, where CNTs or PANIs bridge a broken circuit upon release.

Physicochemical Properties of the Hydroxypropylated Mung Bean, Sweet Potato and Water Chestnut Starches for Hard Capsules Formation (하이드록시프로필화 녹두, 고구마, 물밤 전분의 이화학적 특성과 하드캡슐 제조)

  • Jang, Jeong Hwa;Ko, Jung A;Park, Hyun Jin
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.2
    • /
    • pp.75-80
    • /
    • 2013
  • The physicochemical properties of the hydroxypropylated mung bean, sweet potato and water chestnut starches were studied. The blue value and amylose content of mung bean starch were higher than those of sweet potato and water chestnut. Pasting temperature of hydroxypropylated starches were lower than those of native starch and decreased with increasing contents of propylene oxide. Peak viscosity increased with the increase of degree of hydroxypropylation. With increasing contents of propylene oxide, the clarity and swelling power of all starches were increased and those of mung bean were higher. Mung bean starch produced better hard capsules than sweet potato and water chestnut starch. Hydroxypropylated (>6% propylene oxide) water chestnut starch-based capsules completely dissolved, but hydroxypropylated (>12% propylene oxide) mung bean and sweet potato starch-based capsules were dissolved within 10 min. These results showed that hydroxypropylated starch-based capsules have potentials for pharmaceutical applications as a substitute for gelatin hard capsules.

  • PDF

The Effect of Oxygen Supply on the Production of Citric Acid from Encapsulated Aspergillus niger (산소공급이 캡슐고정화 Aspergillus niger의 구연산 생산에 미치는 영향)

  • Park, Joong-Kon;Jeong, Geung-Sik
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.672-676
    • /
    • 1999
  • Encapsulated Aspergillus niger was prepared in order to inspect the effect of oxygen supply on the production of citric acid. A. niger cells which had been immobilized in the calcium alginate capsule grew and mycellia penetrated through the capsule membrane after two days of cultivation and covered over all of the capsule after eight days. The mycellia became loose when the nitrogen source was sufficient of oxygen was deficient. The larger amount of encapsulated cells were put into a given growth medium, the smaller quantity of citric acid was produced. The increase of volumetric oxygen transfer coefficient from 1.8 $hr^-$ to 2.55 $hr^-$ in the flask culture accelerated cell growth rate but did not influence the production of citric acid. The high oxygen supply rate($k_La:\;150\;hr^-$) in the concentric air lift reactor hastened the growth of cells and hindered the production of the citric acid. The reduction of nitrogen source level in the growth medium in the concentric air lift reactor increased citric acid production by 40 percent of that of flask cultivation and the culture period was shortened by 3 days. The variation of the geometry of the concentric air lift reactor did not influence the growth rate of encapsulated cells and production rate of citric acid.

  • PDF

Optimization of Fish Oil Microencapsulation by Response Surface Methodology and Its Storage Stability (반응표면분석법에 의한 정제어유 미세캡슐화 공정의 최적화 및 미세캡슐 저장안정성 분석)

  • Chang, Pahn-Shick;Ha, Jae-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.646-653
    • /
    • 2000
  • Using agar and waxy com starch as the wall material, we could encapsulate the purified fish oil. Firstly, we have developed a simple and sensitive method for the quantitative analysis of the microencapsulation yield using 5% cupric acetate pyridine solution. Then, the optimum conditions such as the ratio of [core material] to [wall material]$(X_1)$, the temperature of dispersion fluid$(X_2)$, and the emulsifier concentration$(X_3)$ for the microencapsulation process were determined by using response surface methodology(RSM). The regression model equation for the yield of microencapsulation(Y, %) of purified fish oil upon three kinds of independent variables could be predicted as follows; Y = 100.138621-0.735000$(X_1)$+0.840000$(X_1)(X_2)$+0.817500$(X_1)(X_3)$-0.852500$(X_2)(X_3)$. And the optimum conditions for the microencapsulation of the purified fish oil were the ratio of [core material] to [wall material] of 4.9 : 5.1(w/w), the emulsifier concentration of 0.48%, and dispersion fluid temperature of $19.4^{\circ}C$. The microcapsules containing the purified fish oil showed the highest storage stability at pH 7.0 and $20{\sim}25^{\circ}C$.

  • PDF

Studies on the Microencapsulation of ${\omega}-3$ Polyunsaturated Fatty Acid (${\omega}-3$계 지방산의 미세캡슬화에 관한 연구)

  • Kim, Chul-Hyun;Lee, Kyung-Wook;Baick, Seung-Chun;Kwak, Hae-Soo;Kang, Jong-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.743-749
    • /
    • 1996
  • This study was carried out to investigate the microencapsulatuion of ${\omega}-3$ fatty acid isolated from fish oil and to obtain fundamental information on the utilization of the ${\omega}-3$ fatty acid in the dairy foods field. To obtain the desirable microencapsulation efficiency, 1.5% agar and 0.5% gelatin were used as coating materials, and 0.5% SFAN 60 (HLB 4.5 value) was used to maintain the emulsion stability. The optimal mixing ratio of coating material to core material was 8:2 (w/w). The thermostability of microencapsulated product was not maintained above $60^{\circ}C$. Microencapsulation efficiency was kept at about 90% at $4^{\circ}C$ and $10^{\circ}C$ for 7 days storage at various temperatures. At $20^{\circ}C$ and $30^{\circ}C$, however, about 80% microencapsulatuion efficiency was obtained for 3 days storage. About 80.57% microcapsule was destroyed by 1%> pepsin solution at $37^{\circ}C$ for 10 min.

  • PDF

Microencapsulation of Surface-modified Carbon Black by Miniemulsion Polymerization (미니유화중합법에 의한 표면개질된 카본블랙의 마이크로캡슐화)

  • Jang, Heang Sin;Hong, Jinho;Lee, Jeongwoo;Shim, Sang Eun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.669-675
    • /
    • 2008
  • Carbon black has been widely used in composites, tonor resin, and ink materials. Since carbon black readily agglomerates, it is important to disperse carbon black in real applications. Aiming to improve dispersion stability, carbon black was chemically oxidized to possess hydroxyl groups using a phase transfer catalyst at room temperature. The modified carbon black (CB-OH) was grafted by a silane coupling agent, p-methylacryloxypropyltrimethoxysilane, to carry teminal vinyl groups. The modified carbon black was subsequently used in miniemulsion polymerization to achieve encapsulted core-shell structure. Finally, well-encapsulated carbon black by polymer was obtained in the size range of 100-500 nm. Throughout the polymerization, the effects of surface modification, types of monomers, initiators, and emulsifiers were investigated.