• Title/Summary/Keyword: 캠 형상 설계

Search Result 44, Processing Time 0.078 seconds

A simulation model of valve train dynamics for cam profile optimizations (캠 형상 최적설계를 위한 밸브 트레인 동특성 해석 모델)

  • 김도중
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.53-63
    • /
    • 1993
  • A numerical modeling technique is proposed for computer simulations of high speed valve train dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. In addition to that, steady state response of the valve dynamics can be obtained by just one cycle simulation. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental result prove the computer model developed here is accurate and also computationally efficient. The model is especially useful for cam profile optimizations.

  • PDF

Optimum Cam Profile Design of VTR Deck Using the Response Stuface Analysis (반응표면분석법을 이용한 VTR Deck 캠의 최적형상 설계)

  • Han, Hyeong-Seok;An, Hyeong-Jin;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.788-795
    • /
    • 1996
  • In this paper, and optimum profile of a cam being used in a VTR Deck mechanism is designed by the response surface analysis. The objective function of the design is to reduce driving torque of the pinch roller system that is used to compress video tape to the capstan motor axia. The pinch roller system that will be designed is modeled using the general purpopse mechanism analysis program DADS. The computer model is compared with the physical system for reliability. A model function to represent relationship between design variables and the objective function is estimated by the response surface analysis. Once the model function is reliably estimated the optimal design is carried out using the model function and each design variable's boundaries. To verify improvement of the pinch roller system, a prototype for the pinch rooler system is made and tested. From the test result, an optimum cam profile to resuce driving torque of the pinch roller system is verified.

A Study on Optimum Cam Profile Extraction Considering Dynamic Characteristics of a Cam-Valve System (밸브 기구의 동특성을 고려한 캠 형상 설계에 관한 연구)

  • 박경조;전혁수;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.29-39
    • /
    • 1989
  • In this work, a numerical and experimental study was done to get an optimum cam profile considering dynamic characteristics of a cam-valve system. First of all, a four degree of freedom dynamic model was set up for an OHV type cam-valve acceleration while not modifying original cam shape greatly. Also another optimization which aims to enlarge the valve displacement area while reducing the peak valve acceleration, was tried. The optimized cam profile was tested experimentally and found that the measured valve displacement and pushrod force show only very small error from the analytically predicted model simulation results.

A Study on Design Approach of Inverse Cam Mechanism (Inverse Cam Mechanism 설계에 관한 연구)

  • 김도현;신중호;김종수;김상진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.916-919
    • /
    • 2002
  • Cam mechanism is one of the common devices used in lots of automatic machinery. This paper introduces to an inverse cam mechanism. The inverse cam mechanism has a reverse structure as compared with common cam mechanism. For shape design of the inverse cam the approach used in this paper is an instant velocity center method that find the contact point between cam and roller at any contact time. And a computer program is developed for shape design and simulation by visual $C^{++}$ language. As the results, this paper presents two examples for the shape design of the inverse cam mechanism in order to prove the accuracy of the design procedures.

  • PDF

Optimal Design of a Variable-Speed Cam for Power Circuit Breaker (고압 회로차단기의 비등속 회전 캠의 최적설계)

  • Kim, Jun-Hyeong;An, Gil-Yeong;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.47-53
    • /
    • 2001
  • Power Circuit Breaker uses a variable-speed cam mechanism actuated by pre-loaded spring force. This paper presents the optimal design procedure for a variable-speed cam mechanism based on the dynamic model of a complete spring-actuated cam system. The optimal cam is compared with an original cam. Simulation results show that the dynamic behaviors of the designed cam are superior to those of the original cam.

  • PDF

타원계 비원형기어(엽형)의 설계에 관한 연구

  • 고윤호;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.622-626
    • /
    • 1993
  • 비원형기어의 기본적인 특징을 몇 가지 소개하고자 한다. 첫째, 간소한 기구로서 소형화할 수 있고, 둘째, 임의의 부동속 회전 전달을 얻을 수 있으며, 셋째, 맞물린 치면의 미끄럼접촉이 적기 때문에 마모피로가 적고 넷째, 고부하 전달이 가능하다는 장점들이 있다. 본 연구의 목적은 링크, 캠과 같은 동일한 용도에서 사용되는 다른 여러 기구에 비해 많은 이점을 가지고 있는 적합한 타원계 비원형기어(엽형)에서 편평도의 변화에 따른 피치라인을설계하고, 각속비 및 편평도에 따른 형상과 길이의 변화, 물림압력각, 곡률반경등의 연구를 바탕으로 스퍼형과 헬리컬형의 타원계 엽형로타를 AOTOCAD의 script, 3dace를 이용하여 Computer Simulation를 통해 도형화한다.

  • PDF

Optimization of a Centrifugal Compressor Impeller(I): Shape Parameters and Design Variables (원심압축기 최적화를 위한 연구(I): 형상변수 및 설계변수에 관한 연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Ahn, Kook-Young;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.424-432
    • /
    • 2011
  • Shape parameters and design variables for a centrifugal compressor impeller were investigated for optimizing a centrifugal compressor. In order to compare the performance of an optimized impeller with the performance of the original impeller, an already tested impeller was chosen and design variables for optimization were selected. The meridional shapes at the shroud and at the hub were re-designed using the Bezier curve. The camber-lines of the impeller blade at the hub and at the tip were also expressed by the Bezier curve. The shape curves for impeller could be expressed using 6-8 control points. Among them, eight control points which have strong effect to the shape can be selected as design variables for optimization. Therefore, any impeller which is expressed by data points for its shape can be optimized using few design variables.

Cam Profile Design of a Fuel Pump Using Dynamic Analysis (동해석을 이용한 연료펌프의 캠 형상 설계)

  • Kim Bong-Ho;Lee Boo-Youn;Kim Won-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • This work focuses on reducing the noise and vibration levels of an LPi fuel pump, which are generated from the dynamic motions of pump elements and non-uniform flow of fuel. The noise and vibration levels increase as the revolution speed of the cam goes up. The fuel pump consists of five cavity cells, plungers and diaphragms, which are driven by the cam. The optimal design of the cam profile is performed to decrease the accelerations of moving Parts and to obtain a smooth hydraulic force through a dynamic analysis of a cam-plunger mechanism. The cam-Plunger with a cavity is modeled as a 2 degrees of freedom system having non-linear contacts, the cam profile being represented in terms of Fourier series in order to determine the optimal shape of the cam. From the optimized cam Profile, the acceleration of the diaphragm is reduced in $78\%$, the hydraulic force becoming smoother in case that the hydraulic force is rapidly dropped.

A Study on Design of Barrel Cam for Automatic Bulb Production Machine (전구 자동화 생산기계용 바렐 캠의 형상설계에 관한 연구)

  • Kim, Jong-Su;Yun, Ho-Eop
    • 연구논문집
    • /
    • s.33
    • /
    • pp.89-97
    • /
    • 2003
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then detemines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower. Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents shape design of the barrel cam in order to prove the accuracy of the proposed methods

  • PDF

Contact Fatigue Life for CRG System (CRG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kim, Chang-Hyun;Kwon, Soon-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1391-1397
    • /
    • 2012
  • A cam ring gear (CRG) system based on a hypotrochoid curve consists of a pinion with roller teeth and its conjugated internal CRG. In this study, we investigated contact forces, contact stresses, and load stress factors to predict the surface pitting life using an exact CRG profile by introducing the profile modification coefficient. The results show that the pitting life can be extended significantly by increasing the profile modification coefficient without any other change of parameters in the CRG system.