• Title/Summary/Keyword: 캐패시터

Search Result 589, Processing Time 0.032 seconds

High-Efficiency and High-Power-Density 3-Level LLC Resonant Converter (고효율 및 고전력밀도 3-레벨 LLC 공진형 컨버터)

  • Gu, Hyun-Su;Kim, Hyo-Hoon;Ji, Sang-Keun;Ryu, Dong-kyun;Choi, Heung Gyoon;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.182-183
    • /
    • 2017
  • 본 논문은 고효율 및 고전력밀도 3-레벨 LLC 공진형 컨버터를 제안한다. 전원회로의 고전력밀도화를 위해서는 고주파 구동이 필수적이지만 기존 LLC 컨버터는 스위칭 손실로 인하여 한계를 갖는다. 스위칭 손실은 스위치 전압 첨두치 감소를 통해 저감이 가능하다. 전압 첨두치는 4개 스위치의 직렬연결을 통해 저감시킬 수 있으며, 각 스위치의 전압평형을 위한 추가적인 회로가 필수적이다. 따라서 본 논문에서는 스위칭 손실을 저감시킴으로써 1MHz 고주파 구동이 가능하며, 단 하나의 캐패시터를 이용하여 모든 스위치의 전압평형을 이룰 수 있는 3-레벨 LLC 공진형 컨버터를 제안한다. 또한 제안회로의 전압평형 원리를 이용하여 n-레벨 컨버터로 확장 가능하여 스위치 전압 첨두치를 더욱 저감시켜 입력전압이 높은 응용례의 적용에도 적합하다. 제안회로의 타당성 검증을 위해 350W급 시작품을 제작하여 실험 결과를 제시한다.

  • PDF

Pinhole Phenomena of Dielectric Breakdown in External Electrode Fluorescent Lamps (외부전극 형광램프의 절연 파괴에 의한 핀홀(Pinhole) 현상)

  • Lee, J.;Kim, S.;Song, H.;Gill, D.;Lee, D.;Koo, J.;Cho, G.;Cho, M.;Whang, M.;Kim, Y.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.29-32
    • /
    • 2004
  • 외부전극 형광램프의 구동에서 과도한 전력을 인가하면, 치부전극 부분의 유리관 표면에 작은 원형의 구멍이 발생하여 램프가 파손된다. 이를 핀홀이라고 지칭한다. 핀홀은 치부전극과 유리관을 유전층으로 하는 캐패시터의 절연파괴로 분석된다. 치부전극에 정상 동작이상의 고 전압을 인가하면, 고 전류에 의하여 전극부분에 상당한 열이 발생하고, 이러한 전극부분에 발생하는 열과 고 전압에 의한 유리층 자제의 강한 전기장에 의하여 절연이 파괴되면서 핀홀이 발생한다. 이러한 현상은 유리판을 절연층으로 하여 유리판 양면에 전극을 형성하여 고 전압에 의한 절연 파괴 실험과 동일한 현상으로 이해된다.

  • PDF

Fabrication of Thick Film Capacitors with Printing Technology (인쇄기법을 이용한 후막 캐패시터 제작)

  • Lee, Hye-Mi;Shin, Kwon-Yong;Kang, Hyung-Tae;Kang, Heui-Seok;Hwang, Jun-Young;Park, Moon-Soo;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.100-101
    • /
    • 2007
  • Polymer thick film capacitors were successfully fabricated by using ink-jet printing and screen printing technology. First, a bottom electrode was patterned by ink-jet printing of a nano-sized silver ink. Next, a dielectric layer was formed by the screen printing, then a top electrode was pattern by ink-jet printing of a nano-sized silver ink. The printed area of the dielectric layers were changed into $2{\times}2m^2$and $4{\times}2m^2$, and also the area of the electrodes were patterned with $1{\times}1mm^2$ and $1{\times}3mm^2$. The thickness of the printed dielectric layer was ranged from 1.1 to $1.4{\mu}m$. The analysis of capacitances verified that the capacitances was proportional to the area of the printed electrode. The capacitances of the fabricated capacitors resulted in one third of the calculated capacitances.

  • PDF

Structural and Electrical Properties of RaRuO$_3$ Thin Film for Electrode of Ferroelectric Capacitors (강유전체 캐패시터 전극으로의 BaRuO$_3$박막의 구조적 및 전기적 특성)

  • 박봉태;구상모;문병무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.56-61
    • /
    • 1999
  • Highly conductive oxide films of BaRuO$_3$ have been grown heteroepitaxially on (100) LaAlO$_3$ single crystalline substrates by using pulsed laser deposition. The films are c-axis oriented with an in-plane epitaxial relationship of <010><100>BaRuO$_3$ // <110>LaAlO$_3$. Atomic force microscopy (AFM) observation shows that they consist of a fine-arranged network of grains and have a mosaic microstructure. Generally temperature-dependent resistivity shows the transition from metallic curve to semiconductor-metallic twofold curve by the deposition conditions for Ru oxide based materials like SrRuO$_3$, CaRuO$_3$, BaRuO$_3$, etc.. This twofold curve comes from the structural similarity of Ru oxide based materials including BaRuO$_3$. We find that the distance of Ru-Ru bonding in the unit cell of BaRuO$_3$ as well as the grain boundary scattering could be the two important causes of these interesting conductive properties.

  • PDF

Ferroelectric characteristics of PZT capacitors fabricated by using chemical mechanical polishing process with change of process parameters (화학적기계적연마 공정으로 제조한 PZT 캐패시터의 공정 조건에 따른 강유전 특성 연구)

  • Jun, Young-Kil;Jung, Pan-Gum;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.66-66
    • /
    • 2007
  • Lead zirconate titanate (PZT) is one of the most attractive perovskite-type materials for ferroelectric random access memory (FRAM) due to its higher remanant polarization and the ability to withstand higher coercive fields. We first applied the damascene process using chemical mechanical polishing (CMP) to fabricate the PZT thin film capacitor to solve the problems of plasma etching including low etching profile and ion charging. The $0.8{\times}0.8\;{\mu}m$ square patterns of silicon dioxide on Pt/Ti/$SiO_2$/Si substrate were coated by sol-gel method with the precursor solution of PZT. Damascene process by CMP was performed to pattern the PZT thin film with the vertical sidewall and no plasma damage. The polarization-voltage (P-V) characteristics of PZT capacitors and the current-voltage characteristics (I-V) were examined by change of process parameters. To examine the CMP induced damage to PZT capacitor, the domain structure of the polished PZT thin film was also investigated by piezoresponse force microscopy (PFM).

  • PDF

Ferroelectric and leakage current characteristics of Pt/SBT/Pt capacitors with post annealing process (후속 열처리에 따른 Pt/SBT/Pt 캐패시터의 강유전 특성과 누설전류 특성)

  • 권용욱;박주동;연대중;오태성
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.238-244
    • /
    • 1999
  • Pt/SBT/Pt capacitors were fabricated using the MOD-derived $SrBi_{2x}Ta_2O_9$ (SBT) films and their ferroelectic and leakage current characteristics were investigated with post annealing at 400~$800^{\circ}C$. Although the MOD-derived SBT film exhibited the hysteresis loop typical for the leaky film, the well-saturated ferroelectric hysteresis loop could be obtained by post annealing the Pt/SBT/Pt capacitors at $550^{\circ}C$~$800^{\circ}C$. The remanent polarization $2P_r$ of the SBT film exhibited a maximum value of 9.72$\mu\textrm{cm}^2$ with post annealing at $600^{\circ}C$, and then decreased with increasing the post annealing temperature above $600^{\circ}C$. The MOD-derived SBT films exhibited the high leakage current density of ~$10^{-3} \textrm{A/cm}^2$ at 75kV/cm. With post annealing the Pt/SBT/Pt capacitor at 600~$800^{\circ}C$, however, the leakage current density decreased remarkably to less than $10^{-6}\textrm{A/cm}^2$ at 75kV/cm.

  • PDF

Metal Vapor Laser Research II. (금속증기레이저 연구 II)

  • 이재경;정환재;임기건;이형종;정창섭;김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.178-182
    • /
    • 1992
  • An air-cooled discharge-heated copper-vapor laser system with its inter-electrode distance of 45 cm has been developed by utilizing an alumina ceramic plasma tube of 1.6 cm in diameter and 50 cm in lengih. For operating the laser, a dc high voltage power supply with output rating of 6 kV and 500 mA, a resonant charging circuitry consisting partly of an 1.8 H inductor assembly and a 5 nF storage capacitor, and a thyratron driver operating up to 7 kHz have also been developed. The present laser system starts lasing at the tube temperature of about $1350^{\circ}C$ and an maximum average output power of 0.7 W has been obtained at 12 kV, 4.5 kHz. 50 mbar of Ne buffer gas pressure, and at the tube temperature of $1460^{\circ}C$.

  • PDF

A Facile synthesis of CoS by Successive Ionic Layer Adsorption and Reaction (SILAR) Process for Supercapacitors (스테인리스강 기판에 연속 이온 층 흡착 및 반응 (SILAR) 공정을 통한 CoS 코팅 및 슈퍼캐패시터 전극 특성)

  • Kim, Jaeseung;Lee, Jaewon;Kumbhar, Vijay S.;Choi, Jinsub;Lee, Kiyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.130-137
    • /
    • 2019
  • In this study, the cobalt sulfide (CoS) nanosheet on stainless steel as a supercapacitor electrode is synthesized by using a facile successive ionic layer adsorption reaction (SILAR) method. The number of cycles for dipping and rinsing can control the nanosheet thickness of CoS on stainless steel. Field emission-scanning electron microscopy (FE-SEM) showed a layer structure of CoS particles coupled as agglomeration. And x-ray diffraction (XRD) showed the crystallinity of the CoS nanosheet. To investigate the characteristics of the CoS nanosheet electrode as the supercapacitor, analysis of electrochemical measurement was conducted. Finally, the CoS nanosheet of 70cycles on stainless steel shows the specific capacitance ($44.25mF/cm^2$ at $0.25mA/cm^2$) with electrochemical stability of 78.5% over during 2000cycles.

New Fault Current Fast Shutdown Scheme for Buck Converter (벅 컨버터의 새로운 고장전류 고속차단 기법)

  • Park, Tae-Sik;Kim, Seong-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.68-73
    • /
    • 2019
  • This paper presents a novel fast shut-down scheme for Buck converter by using a coupled inductor. Generally, a controller for Buck converter stops generating PWM patterns in various fault cases: Overcurrent, Short circuit, or Overvoltage, but the inductor and capacitor keep supplying their stored energy to loads although the switching operations in Buck converter stopped. The stored energy in the inductor and capacitor could cause electrical stresses on breakers and safety problems. The main idea of the proposed fast shutdown scheme is to demagnetize the inductor core by using a coupled inductor, and its performance and operations are verified by using PSIM Simulation.

2D Layered Ti3C2Tx Negative Electrode based Activated Carbon Woven Fabric for Structural Lithium Ion Battery (카본우븐패브릭 기반 2D 구조의 Ti3C2Tx 배터리음극소재)

  • Nam, Sanghee;Umrao, Sima;Oh, Saewoong;Oh, Il-Kwon
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.296-300
    • /
    • 2019
  • Two dimensional transition metal carbides and/or nitrides, known as MXenes, are a promising electrode material in energy storage due to their excellent electrical conductivity, outstanding electrochemical performance, and abundant functional groups on the surface. Use of $Ti_3C_2$ as electrode material has significantly enhanced electrochemical performance by providing more chemically active interfaces, short ion-diffusion lengths, and improved charge transport kinetics. Here, we reports the efficient method to synthesize $Ti_3C_2$ from MAX phase, and opens new avenues for developing MXene based electrode materials for Lithium-Ion batteries.