• Title/Summary/Keyword: 캐스팅

Search Result 895, Processing Time 0.031 seconds

Synthesis and Characterization of Porous Poly(ε-caprolactone)/Silica Nanocomposites (다공성 폴리(ε-카프로락톤)/실리카 복합체의 제조 및 특성평가)

  • Son, Siwon;Choi, Ji-Eun;Cho, Hun;Kang, DaeJun;Lee, Deuk Yong;Kim, Jin-Tae;Jang, Ju-Woong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.323-328
    • /
    • 2015
  • Poly(${\varepsilon}$-caprolactone) (PCL) nanofibers and PCL/silica membranes were synthesized by sol-gel derived electrospinning and casting, respectively. Smooth PCL nanofibers were obtained from the precursor containing N,N-dimethylformamide (DMF). PCL/silica membranes were prepared by varying the tetraethyl orthosilicate (TEOS) contents from 0 to 40 vol% to investigate the effect of silica addition on mechanical properties and cytotoxicity of the membranes. Although the strength of the membranes decreased from 12 to 8 MPa with increasing the silica content, the strength remained almost constant 7 weeks after dipping in phosphate buffered saline solution (PBS). The strength reduction was attributed to the presence of a patterned surface pores and micro-pores present in the walls between pores. The crystal structure of the membranes was orthorhombic and the crystallite size decreased from 57 to 18 nm with increasing the silica content. From the agar overlay test, the PCL/silica membranes exhibited neither deformation and discoloration nor lysis of L-929 fibroblast cells.

Preparation and Desalination Characteristics of Highly Durable Heterogeneous Cation-exchange Membrane Based on Polyvinylidene Fluoride (PVDF) by Casting Method for Electrodialysis (캐스팅법에 의한 전기투석용 고내구성 Polyvinylidene Fluoride (PVDF)계 양이온 불균질 이온교환막 제조 및 탈염특성)

  • Ko, Dae Young;Kim, In Sik;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.97-107
    • /
    • 2016
  • This study was carried out to prepare a heterogeneous cation exchange membrane by mixing polyvinylidene fluoride (PVDF), commercial cation exchange resin and sulfonated poly(phenylene oxide)(SPPO) in order to propose an optimum condition for the preparation, and to compare its properties with commercial membrane. Study results show that the ion exchange capacity and electrical resistance were outstanding when the ratio of polymer matrix was less than 30% comparing between PVDF-IER, PVDF-SPPO and PVDF-SPPO-IER. The tensile strength was confirmed that seemed a hard look was five times greater compared to the commercial heterogeneous membrane, despite the weak durability of PVDF resin. Therefore, when chemical and mechanical properties are considered, the optimum mixing ratio between PVDF, IER and SPPO was 30 : 70, at which electric resistance was measured as $3{\sim}5{\Omega}{\cdot}cm^2$, ion exchange capacity as 0.6~1.0 meq/g, while mechanical strength was in a range of $12{\sim}15kgf/cm^2$.

The Preparation and Electrochemical Properties of Homogeneous Anion-exchange Composite Membranes Containing Acrylonitrile-butadiene Rubber (Acrylonitrile-butadiene rubber를 포함한 균질계 음이온교환 복합막의 제조 및 전기화학적 특성)

  • Song, Pu Reum;Mun, Hye Jin;Hong, Sung Kwon;Kim, Jeoung Hoon;Chang, Bong Jun
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.463-471
    • /
    • 2014
  • While poly(styrene)-based anion exchange membranes have the advantage like easy and simple manufacturing process, they also possess the disadvantage of poor durability due to their brittleness. Acrylonitrile-butadiene rubber was used here as an additive to make the membranes have improved flexibility and durability. For the preparation of the anion exchange membranes, a PP mesh substrate was immersed into monomer solutions with vinylbenzyl chloride, styrene, divinylbenzene and benzoyl peroxide, then thermally polymerized & crosslinked. The prepared membranes were subsequently post-aminated using trimethylamine to result in $-N+(CH_3)_3$ group-containing composite membranes. Various contents of vinylbenzyl chloride and acrylonitrile-butadiene rubber were investigated to optimize the membrane properties and the prepared membranes were evaluated in terms of water content, ion exchange capacity and electric resistance. It was found that the optimized composite membranes showed higher IEC and lower electric resistance than a commercial anion exchange membrane(AMX) and have excellent flexibility and durability.

Preparation of Forward Osmosis Membranes with Low Internal Concentration Polarization (농도 분극이 저감된 정삼투 분리막 제조)

  • Kim, Nowon;Jung, Boram
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.453-462
    • /
    • 2014
  • Thin film composite (TFC) polyamide (PA) membranes were prepared on polyester (PET) nonwoven reinforced polysulfone supports for forward osmosis (FO) processes. PSF (polysulfone) supports were prepared via the phase inversion process from PSF casting solutions in dimethyl formamide (DMF) solvents (19 wt%) by using a PET nonwoven (thickness of $100{\mu}m$) as a mechanical reinforcing material for reverse osmosis (RO) membrane. The PSF support from 19 wt% of DMF/PSF casting solution showed sponge-like morphology and asymmetric internal structure. To reduce the internal concentration polarization in FO operation, thin ($20{\mu}m$ of thickness) nonwoven-supported PSF supports were prepared by using PSF/DMF casting solution (9~19 wt%). A desirable support structure with a highly porous sponge-like morphology were achieved from the thin nonwoven-supported PSF layer prepared with 9~12 wt% casting solution. A crosslinked aromatic polyamide layer was fabricated on top of each support to form a TFC PA membrane. The tested sample from 12 wt% of DMF/PSF casting solution presented outstanding FO performance, almost 5.5 times higher water flux (24.3 LMH) with low reverse salt flux (RDF, 1.5 GMH) compared to a thick nonwoven rainforced membrane (4.5 LMH of flux and 3.47 GMH of RSF). By reducing the thickness of the nonwoven and optimizing PSF concentration of casting solution, the morphology of the prepared membranes were changed from a dense structure to a porous sponge structure in the boundary area between nonwoven and PET support layer.

Characterization of Nafion/Poly(ether(amino sulfone)) Acid-base Blend Polymer Electrolyte Membranes for Direct Dimethyl Ether Fuel Cell (Nafion/poly(ether(amino sulfone)) 산-염기 블렌드 전해질막을 이용한 디메틸 에테르 직접연료전지 특성연구)

  • Park Sun-Mi;Choi Won-Choon;Nam Seung-Eun;Lee Kew-Ho;Oh Se-Young;Lee Chang-Jin;Kang Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Nafion/poly(ether(amino sulfone)) acid-base blend polymer electrolyte membranes were prepared and their proton conductivity and dimethyl ether permeability were investigated. Characteristics of direct dimethyl ether fuel cell (DDMEFC) performance using prepared blend membrane were studied. The increase of amine groups in the base polymer in composite membranes resulted in the decrease in dimethyl ether permeability. The proton conductivity of the blend membranes gradually increased as increasing temperature. The conductivity of Nafion/PEAS-0.6 (85:15) blend membranes was measured to be $1.42\times10^{-2}S/cm\;at\;120^{\circ}C$ which was higher than that of the recast Nafion. The performance of direct dimethyl ether fuel cell (DDMEFC) using the Nafion/PEAS blend membranes was higher than that using $Nafion^(R)115$ membrane. Enhanced performance of direct dimethyl ether fuel cells using Nafion/PEAS blend membrane was explained by reducing dimethyl ether (DME) crossover through the electrolyte membrane and maintenance of the proton conductivity at high temperature.

Implementation of RTP/RTCP for Teleconferencing System and Analysis of Quality-of-Service using Audio Data Transmission (영상회의 시스템을 위한 RTP/RTCP 구현 및 오디오 데이터 전송을 위용한 QoS 분석)

  • Kang, Min-Gyu;Hwang, Seung-Koo;Kim, Dong-Kyoo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3047-3062
    • /
    • 1998
  • This paper deseribes the desihn and the implementation of the Realtime Transport Protocol(RTP)/ Rdaltime Control Protocol(RTCP) (RFC 1889,1890) that is used to transmit the audio/video data to any destination and to feedback the Quality of Service (QoS) information of the received media data to the sender, in the teleconferencing systems proposed by ITU-T. These protocols are implemented with multi thead technique and run on top of UDP/IP-Multicast through the socket interface as the underlying protocol. The upper layer is impelmented such that in can be accessed by the H245 comference control protocol. The RTP packetizes the digitized audio/video data from the encoder info a fixed format, and multieast to the participants. The RTCP monitors RTP packets and extracts the QoS values from it such as round-trip delay, jiter and packet loss to form RTCP packets and non periokically sends them to the sender site. In this Paper, we also descritx the study of measurement and analysis for QoS factors that observed on performing teleconferencing system over Internet. The results from this experiment is indicate that RTT and Jitter value are acceptable even entwork load is high. However, it appears that packet loss rate is high in daytime and most losses periods have length one or two.

  • PDF

Study on Ionic Conductivity and Crystallinity of PEO/PMMA Polymer Composite Electrolytes containing $TiO_2$ Filler ($TiO_2$ 필러를 포함하는 PEO/PMMA 고분자 복합체 전해질의 이온전도도 및 결정화도)

  • Lee, Lyun-Gyu;Park, Soo-Jin;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.758-763
    • /
    • 2011
  • In this work, polymer composite electrolytes were prepared by a blend of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) as a polymer matrix, propylene carbonate as a plasticizer, $LiClO_4$ as a salt, and by containing a different content of $TiO_2$, by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was evaluated using X-ray diffraction(XRD) and AC impedance method, respectively. The morphology of composite electrolyte film was analyzed by SEM method. From the experimental results, by increasing the $TiO_2$ content, crystallinity of PEO was reduced, and ionic conductivity was increased. In particular, the ionic conductivity was dependent on the content of $TiO_2$ and showed the highest value 15 wt%. However, when $TiO_2$ content exceeds 15 wt%, the ionic conductivity was decreased. According to the surface morphology, the ionic conductivity was decreased because the polymer composite electrolytes showed a heterogenous morphology of fillers due to immiscibility or aggregation of the filler within the polymer matrix.

Preparation and Characteristics of Crosslinked SEBS/HIPS Cation Exchange Membrane Using Epoxidized Polybutadiene/Divinylbenzene (Epoxidized Polybutadiene/Divinylbenzene을 이용한 가교 SEBS/HIPS 양이온교환막의 제조 및 특성)

  • Choi, Yong-Jae;Lee, Hong-Suk;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.608-614
    • /
    • 2009
  • The cation-exchange membrane which was sulfonated styrene-ethylene/buthlene-styrene(SEBS) block copolymer containing the high impact polystyrene (HIPS) was prepared via post-sulfonation and casting method using the epoxidized polybutadiene and divinylbenzene as crosslinking agents. Post-sulfonation was carried out with sulfuric acid as sulfonating agent and silver sulfate as initiator in the nitrogen atmosphere. The basic properties of membranes, degree of sulfonation (DS), water uptake, ion-exchange capacity (IEC), electrical resistance, and modulus have been examined. DS of membrane increased with increasing the sulfonation time. The maximum DS of membrane containing 10 wt% HIPS was 83.6 %. The water uptake and IEC of membranes gradually increased as increasing the DS. The maximum water uptake and IEC of membranes were 43.8 % and 1.14 meq/g, respectively. The lowest electrical resistance of membrane containing the 20 wt% HIPS was $83\;\Omega{\cdot}cm^2$. The electrical conductivity of membrane containing 10 wt% HIPS was $1.22\times10^{-4}S/cm$. The modulus of membrane increased with increasing DS and these values were 153 and $204\;kgf/cm^2$ before and after sulfonation, respectively.

Colorless Copolyimide Films: Thermo-mechanical Properties, Morphology, and Optical Transparency (무색 투명한 폴리이미드 공중합체 필름 : 열적-기계적 성질, 모폴로지, 및 광학 투명성)

  • Jin, Hyo-Seong;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.256-262
    • /
    • 2008
  • Copolyimides containing pendant trifluoromethyl ($CF_3$) groups were synthesized from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and bis[4-(3-aminophenoxy)phenyl]sulfone (BAPS) with various concentrations of 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane(BAPP) to poly(amic acid)(PAA), followed by thermal imidization. These copolyimides were readily soluble in N,N'-dimethylacetamide (DMAc) and could be solution-cast into a flexible and tough film. The thermomechanical properties, morphology and an optical transparency of the copolyimide films were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), scanning electron microscopy (SEM), universal tensile machine (UTM), and a UV-Vis spectrometer. The cast copolyimide films exhibited high optical transparency with a cut-off wavelength (${\lambda}_0$) of $275{\sim}319\;nm$ in UV-vis absorption and a low yellow index(YI) value of $3.65{\sim}10.37$. The thermo-mechanical properties of copolyimide films were enhanced linearly with increasing a BAPP content. In contrast, the optical transparency of the copolyimide films was found to get worse with increasing a BAPP content.

Sustained Release of Proteins Using Small Intestinal Submucosa Modified PLGA Scaffold (SIS로 개질된 PLGA 담체에서의 단백질의 서방화)

  • Ko, Youn-Kyung;Choi, Myung-Kyu;Kim, Soon-Hee;Kim, Geun-Ah;Lee, Hai-Bang;Rhee, John-M.;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.199-205
    • /
    • 2008
  • In this study, we fabricated poly (lactide-co-glycolide) (PLGA) scaffold modified with small intestinal submucosa (SIS) as a drug delivery matrix of bioactive molecules. SIS derived from the submucosa layer of porcine intestine has been widely used as biomaterial because of low immune response. PLGA scaffold was prepared by the method of solvent casting/salt leaching. Novel composite scaffolds of SIS/PLGA were manufactured by simple immersion method of PLGA scaffold in SIS solution under vacuum. SEM observation shows that PLGA and SIS/PLGA scaffolds have interconnective and open pores. Especially, SIS/PLGA scaffold showed that micro-sponge of SIS with interconnected pore structures were formed in the pores of PLGA scaffold. In order to assay release profile of proteins, we manufactured FITC conjugated BSA loaded PLGA and SIS/PLGA scaffold. And the release amount was identified by fluorescence intensity using the fluorescence spectrophotometer. The initial burst of BSA containing SIS/PLGA scaffolds was lower than that of PLGA scaffolds resulting in constant release. And release of BSA in SIS/PLGA scaffold was fast and incremental because of the increased content of BSA. In conclusion, we confirmed that penetrated SIS solution prevented the initial burst of BSA and PLGA modified with SIS scaffold is useful as protein carriers with controlled release pattern.