• Title/Summary/Keyword: 칼라 모델

Search Result 160, Processing Time 0.024 seconds

Color Image Segmentation Based on Edge Salience Map and Region Merging (경계 중요도 맵 및 영역 병합에 기반한 칼라 영상 분할)

  • Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.105-113
    • /
    • 2007
  • In this paper, an image segmentation method which is based on edge salience map and region merging is presented. The edge salience map is calculated by combining a texture edge map with a color edge map. The texture edge map is computed over multiple spatial orientations and frequencies by using Gabor filter. A color edge is computed over the H component of the HSI color model. Then the Watershed transformation technique is applied to the edge salience map to and homogeneous regions where the dissimilarity of color and texture distribution is relatively low. The Watershed transformation tends to over-segment images. To merge the over-segmented regions, first of all, morphological operation is applied to the edge salience map to enhance a contrast of it and also to find mark regions. Then the region characteristics, a Gabor texture vector and a mean color, in the segmented regions is defined and regions that have the similar characteristics, are merged. Experimental results have demonstrated the superiority in segmentation results for various images.

  • PDF

Automatic Denoising of 2D Color Face Images Using Recursive PCA Reconstruction (2차원 칼라 얼굴 영상에서 반복적인 PCA 재구성을 이용한 자동적인 잡음 제거)

  • Park Hyun;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.63-71
    • /
    • 2006
  • Denoising and reconstruction of color images are extensively studied in the field of computer vision and image processing. Especially, denoising and reconstruction of color face images are more difficult than those of natural images because of the structural characteristics of human faces as well as the subtleties of color interactions. In this paper, we propose a denoising method based on PCA reconstruction for removing complex color noise on human faces, which is not easy to remove by using vectorial color filters. The proposed method is composed of the following five steps: training of canonical eigenface space using PCA, automatic extraction of facial features using active appearance model, relishing of reconstructed color image using bilateral filter, extraction of noise regions using the variance of training data, and reconstruction using partial information of input images (except the noise regions) and blending of the reconstructed image with the original image. Experimental results show that the proposed denoising method maintains the structural characteristics of input faces, while efficiently removing complex color noise.

Face Region Detection Algorithm using Euclidean Distance of Color-Image (칼라 영상에서 유클리디안 거리를 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-sup;Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.79-86
    • /
    • 2009
  • This study proposed a method of detecting the facial area by calculating Euclidian distances among skin color elements and extracting the characteristics of the face. The proposed algorithm is composed of light calibration and face detection. The light calibration process performs calibration for the change of light. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. From the extracted facial area candidate, the eyes were detected in space C of color model CMY, and the mouth was detected in space Q of color model YIQ. From the extracted facial area candidate, the facial area was detected based on the knowledge of an ordinary face. When an experiment was conducted with 40 color images of face as input images, the method showed a face detection rate of 100%.

  • PDF

Moving Object Tracking Method Using Feature Vector (특징 벡터를 이용한 이동 물체 추적)

  • Kim, Se-Jin;Jeon, Hyung-Suk;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1845_1846
    • /
    • 2009
  • 본 논문에서는 특징 벡터를 이용한 강인한 물체 추적 방법을 제안한다. 먼저, 초기 이동 물체의 움직임 영역을 추출하고, KLT알고리즘을 입력 영상에 적용시켜 특징 벡터들을 추출한다. 초기 추출된 이동 물체의 움직임 영역에 추출된 특징 벡터를 적용시켜 1차 정규화 한다. 그 후, RGB 칼라모델과 HSI 칼라모델을 이용하여 이동 물체에 대한 Blob 영역을 설정하고 설정된 Blob 영역에 대해 1차 특징벡터를 Snake 알고리즘으로 동정하여 2차 정규화 과정을 마무리 한다. 최종 정규화 된 특징 벡터를 Particle filter에 입력 데이터로 이용하여 이동 물체를 추적 한다. 마지막으로, 복잡한 환경에서 실험을 통해 그 응용 가능성을 증명한다.

  • PDF

A Study on the Compression Ratio of Fractal-based Color Image Using YIQ Model (YIQ 모델을 사용한 프랙탈 기반 칼라 영상의 압축률에 관한 연구)

  • Kim, Seong-Jong;Sin, In-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.1
    • /
    • pp.215-222
    • /
    • 1998
  • 프랙탈을 기반으로 한 칼라 영상 부호화는 영상을 RGB,YIQ나 CMYK와 같은 기본적인 채널로 분리한 후, 각각의 채널을 독립적으로 프랙탈 이진 영상 부호화 기법에 적용함으로써 쉽게 부호화할 수 있다. 그러나 이 방법은 각각의 채널에 대해 부호화를 반복해야 하기 때문에 많은 계산 시간이 필요하다는 단점이 있다. 본 논문에서는 이러한 단점을 개선하기 위하여 국부적 지역 탐색법을 사용하였으며, 압축률 향상을 위해 각 채널마다 사람의 눈에 느껴지는 민감성의 정도가 다른 YIQ 모델을 사용하여 I나 Q 채널보다 Y채널에 더 많은 비트를 할당하였다. 각각의 치역 블록에 대하여 Y채널에 가장 잘 매칭이 되는 정의역 블록을 찾았으며, I와 Q 채널을 위해서는 잘 매칭이 되는 대응 블록을 이용하였다. 따라서 각각의 YIQ채널을 위한 최적의 변환식을 계산하는 과정에서 단지 하나의 기하학적인 변환식(변환과 선택된 정의역 블록의 주소)만이 필요할 뿐이다. 이러한 접근 방법은 기존의 부호화 방법들과 비교해 볼 때 부호화 시간의 단축과 압축률 향상을 동시에 얻을 수 있다.

  • PDF

3D object generation based on the depth information of an active sensor (능동형 센서의 깊이 정보를 이용한 3D 객체 생성)

  • Kim, Sang-Jin;Yoo, Ji-Sang;Lee, Seung-Hyun
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.455-466
    • /
    • 2006
  • In this paper, 3D objects is created from the real scene that is used by an active sensor, which gets depth and RGB information. To get the depth information, this paper uses the $Zcam^{TM}$ camera which has built-in an active sensor module. <중략> Thirdly, calibrate the detailed parameters and create 3D mesh model from the depth information, then connect the neighborhood points for the perfect 3D mesh model. Finally, the value of color image data is applied to the mesh model, then carries out mapping processing to create 3D object. Experimentally, it has shown that creating 3D objects using the data from the camera with active sensors is possible. Also, this method is easier and more useful than the using 3D range scanner.

  • PDF

Analysis of Color Distortion in Hazy Images (안개가 포함된 영상에서의 색 왜곡 특성 분석)

  • JeongYeop Kim
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.68-78
    • /
    • 2023
  • In this paper, the color distortion in images with haze would be analyzed. When haze is included in the scene, the color signal reflected in the scene is accompanied by color distortion due to the influence of transmittance according to the haze component. When the influence of haze is excluded by a conventional de-hazing method, the distortion of color tends to not be sufficiently resolved. Khoury et al. used the dark channel priority technique, a haze model mentioned in many studies, to determine the degree of color distortion. However, only the tendency of distortion such as color error values was confirmed, and specific color distortion analysis was not performed. This paper analyzes the characteristic of color distortion and proposes a restoration method that can reduce color distortion. Input images of databases used by Khoury et al. include Macbeth color checker, a standard color tool. Using Macbeth color checker's color values, color distortion according to changes in haze concentration was analyzed, and a new color distortion model was proposed through modeling. The proposed method is to obtain a mapping function using the change in chromaticity by step according to the change in haze concentration and the color of the ground truth. Since the form of color distortion varies from step to step in proportion to the haze concentration, it is necessary to obtain an integrated thought function that operates stably at all stages. In this paper, the improvement of color distortion through the proposed method was estimated based on the value of angular error, and it was verified that there was an improvement effect of about 15% compared to the conventional method.

  • PDF

Image Segmentation and Determination of the Count of Clusters using Modified Fuzzy c-Means Clustering Algorithm (변형된 FCM을 이용한 칼라영상의 영역분할과 클러스터 수 결정)

  • 윤후병;정성종;안동언;두길수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.177-180
    • /
    • 2001
  • 영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역분할이 필요하다. 통계적 모델을 이용한 영상의 영역분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 글러스터링 알고리즘을 통한 영상의 영역분할 시 노이즈문제를 이웃한 픽셀들의 멤버쉽 값을 평균화합으로써 해결하는 방법을 제안하였다.

  • PDF

Moving Face Detection using Color and Motion Information (칼라와 움직임 정보를 이용한 움직이는 얼굴 영역 검출 방법)

  • 이연철;김은이;박상용;황상원;김항준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.379-381
    • /
    • 2001
  • 본 논문은 카메라의 움직임이 있는 영상에서 움직이는 사람의 얼굴을 검출하는 방법을 제안한다. 제안된 방법에서, 얼굴 영역을 찾기 위해 피부 색깔 정보와 움직임 정보를 이용한다. 카메라의 움직임을 어파인 모션 모델(Affine Motion Model)을 이용해 제거한 후, 적응적 임계치(adaptive thresholding)를 통해 얻어진 움직임 영역 내에서만 피부 색깔 모델(skin color model)을 이용해 얼굴 영역을 검출한다. 제안된 방법은 시간에 따라 조명이 변하거나 잡음이 포함된 영상에서도 좋은 결과를 얻을 수 있다.

  • PDF

Korean-based color palette creation using deep learning (딥러닝을 활용한 한국어 기반 색상 팔레트 생성)

  • Paeng, Hyunseok;Kim, Hyunwoo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.559-562
    • /
    • 2020
  • 본 논문에서는 한국어 입력 텍스트의 의미를 반영하는 색상 팔레트를 생성하는 방법을 제안한다. 기존 영문 모델에서 한국어의 특수성을 고려하여 입력 방법과 형태소 분석, 임베딩 등 여러 조건을 달리한 접근을 시도하고 최종적으로 두개의 모델을 선정하여 평가를 진행한다. 정량적 평가인 단일 팔레트 다양성 평가와 정성적 평가인 사용자 평가를 진행하였으며 결과 기존 영문 버전보다 다양성이 높았고 사용자가 실제 팔레트 보다 생성된 팔레트를 선호하는 비율도 향상되었다. 이번 연구로 한국어 임베딩을 활용하여 팔레트를 생성하였을 때 보다 다양한 색상과 의미적으로도 적합한 색상을 선정함을 확인할 수 있었다.

  • PDF