• 제목/요약/키워드: 칼라 모델

검색결과 160건 처리시간 0.022초

개선된 영상생성 모델과 적응적 필터를 이용한 칼라 영상 보정방법 (Color Image Compensation Method using Advanced Image Formation Model and Adaptive Filter)

  • 최호형;윤병주
    • 한국콘텐츠학회논문지
    • /
    • 제9권12호
    • /
    • pp.10-18
    • /
    • 2009
  • 일반적으로 PDA, 모바일 폰 카메라, PC 카메라 등으로 촬영된 영상은 촬영 장비의 생동 폭의 한계로 인해 낮은 영상 대비를 갖는 영상들이 획득된다. 이러한 이유로 영상 개선 방법은 여러 가지의 영상 촬영 장비를 이용해 촬영된 영상들의 개선을 위해 필요하다. 영상 개선을 위한 몇 가지의 방법들이 제안되었으나, 후광효과(halo-artifact), 회색계의 왜곡(graying-out), 칼라 잡음(color noise) 등의 영상 왜곡이 발생한다. 이러한 문제를 해결하기 위해, 본 논문은 레티넥스 기반 영상 향상 방법을 제안하며, 회색계의 왜곡을 줄이기 위해 HSV 칼라 좌표계를 사용하며, 후광효과를 줄이기 위해 영상을 전역조명성분, 국부조명성분, 반사성분으로 나누는 개선된 영상 생성모델을 적용한다. 실험 결과는 제안한 방법이 다른 방법들 보다 성능이 우수함을 보여준다.

칼라 분포정보를 이용한 성능적 이미지 검색 평가 (Evaluation of the Use of Color Distribution Image Search in Various Setup)

  • 이용환;안효창;이상범;박진양
    • 한국컴퓨터산업학회논문지
    • /
    • 제7권5호
    • /
    • pp.537-544
    • /
    • 2006
  • 최근 대용량의 디지털 이미지가 제작되면서 멀티미디어 관련 기술에서 이미지 검색이 많은 관심의 대상이 되고 있다. 본 논문에서는 이미지 검색(Image Search)을 위한 가장 기본적인 요소인 이미지 색상에 칼라 분포 정보를 이용하고 다양한 요소에 따라 가중치를 부여한 칼라 기반의 검색 기술자(Descriptor)를 제안하였고 시뮬레이션을 통하여 제안 기술자의 성능을 평가하였다. 칼라 히스토그램을 통한 이미지 검색 기술자를 설계하는데 있어 칼라모델은 HSV를, 웨이블릿 변환 필터는 Daubechies 9/7을, 웨이블릿 분해 레벨은 2레벨을 적용하였을 때 가장 좋은 검색 효율성을 보였다. 또한 유사도 검색은 히스토그램 이차행렬(Quadratic Matrix)을 적용하여 보다 나은 성능을 얻었으나 유사도 검색 계산 시간에서 절대 차이값의 합(L1 Norm)을 사용하는 경우에 비해 20배 이상의 처리 시간이 소요되었다.

  • PDF

칼라변환을 이용한 브러쉬 스트로크의 생성에 관한 연구 (A Study of Brush Stroke Generation Using Color Transfer)

  • 박영섭;윤경현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제9권1호
    • /
    • pp.11-18
    • /
    • 2003
  • 본 논문에서는 회화적 렌더링에서 칼라변환을 이용한 브러쉬 스트로크의 생성에 관한 새로운 알고리즘을 제안한다. 본 논문의 브러쉬 스트로크 생성을 위한 전체적인 구성은 다음과 같다. 첫째, 두 장의 사진(한 장의 소스 이미지와 한 장의 참조 이미지)을 입력으로 하여 칼라 변환 이론을 적용하여 색상 테이블이 바뀐 새로운 이미지를 생성한다. 이 방법은 소스 이미지의 칼라 분포 형태를 창조 이미지의 칼라 분포 형태로 변환하기 위해, 선형 히스토그램 매칭이라 불리는, 간단한 통계학적 방법을 이용한다. 둘째, 가우시안 블러링과 소벨 필터를 이용하여 에지를 검출한다. 검출된 에지는 브러쉬 스트로크 렌더링 시 에지 부분에서 스트로크를 클리핑 함으로써 이미지의 윤곽선 보존을 위해 사용된다. 셋째, 브러쉬 스트로크의 방향을 결정하기 위한 방향맵을 생성한다. 방향맵은 입력 영상에 대한 영역 분할 및 병합을 토대로 만들어진다. 영역별 각 픽셀들에 대해 이미지 그래디언트에 기초한 일정한 방향을 부여함으로써 방향맵을 구성한다. 넷째, 구성된 방향맵을 참조하여 브러쉬 스트로크 생성의 기초가 되는 베지어 곡선(Bezier Curve)의 제어점(Control point)을 설정한다. 실제 회화작품에서 사용되는 브러쉬 스트로크는 일반적으로 곡선의 형태를 이루므로 곡선 표현이 가능한 베지어 곡선을 이용하여 브러쉬 스트로크를 표현하였다. 마지막으로, 생성된 브러쉬 스트로크를 에지부문에서 클리핑하고 배경색을 참조하여 블렌딩하거나 퐁 조명 모델을 이용하여 이미지에 적용하게 된다.

  • PDF

근적외선(NIR) 영상의 특성 분석 및 안개제거 (Analysis and dehazing of near-infrared images)

  • 유제택;나성웅
    • 한국항공우주학회지
    • /
    • 제44권1호
    • /
    • pp.33-39
    • /
    • 2016
  • 칼라 영상의 안개제거 기술이 다양하게 연구되어 왔으며 이 중 칼라 안개 영상의 특성을 토대로 도출한 Dark Channel Prior(DCP) 모델을 이용한 방법이 가장 활발하게 이용되고 있다. 한편 근적외선 영상을 이용한 응용이 널리 사용되고 있으며 근적외선 영상에 존재하는 안개를 제거할 필요가 있음에도 불구하고 기존에 근적외선 영상을 대상으로 하는 안개 제거 기술이 제안되지 않았다. 본 논문에서는 칼라 영상과 근적외선 영상을 안개 제거 측면에서 비교 분석을 수행하며 적외선 영상에 기존의 칼라 안개 제거 알고리즘 기법을 적용했을 때 나타나는 결과를 분석한다. 또한 근적외선 영상에서의 특징에 맞게 기존 칼라 안개 제거 기법을 수정한 기법을 제안하고 그 결과를 분석한다.

가상 모델을 이용한 움직임 추출 알고리즘 (Movement Detection Algorithm Using Virtual Skeleton Model)

  • 주영훈;김세진
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.731-736
    • /
    • 2008
  • 본 논문에서는, 가상 모델을 이용한 움직임 추출 방법을 제안한다. 제안한 방법은 첫 번째, 기존에 제안된 방법으로써 RGB 칼라 모델을 이용하여 전경 영역에 나타나는 에러 값을 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 제거한다. 두 번째, 사람 10명의 신체 구조비를 이용하여 가상 모델을 생성한다. 그 때, 생성된 가상 모델을 추출된 영역에 매칭시키고, 원 탐색 기법을 이용하여 전경영역의 실제 인간의 머리에 대한 얼굴 실루엣을 추출한다. 세 번째 추출된 정보들을 이용하여 mean-shift 알고리즘에 적용시켜 물체를 추적한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 환경에서 실험을 통해 그 응용 가능성을 증명한다.

칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출 (Detection of Road Lane with Color Classification and Directional Edge Clustering)

  • 정차근
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.86-97
    • /
    • 2011
  • 본 논문에서는 칼라분류 및 방향성 에지정보의 클러스터링과 이들의 통합에 의한 새로운 도로영역 및 차선검출 알고리즘을 제안한다. 도로영역 및 차선을 하나의 인식대상 물체로 취급하고, 통계적 파라미터의 반복 최적화에 의한 칼라정보의 클러스터링을 수행해서 검출과 인식을 위한 초기정보로 사용한다. 다음으로, 칼라정보가 갖는 물체인식 의 한계를 개선하기 위해 에지정보를 검출하고, 관심영역(Region Of Interest for Lane Boundary(ROI-LB))의 추출과 ROI-LB 영역에서 방향성 에지정보의 검출과 클러스터링을 수행한다. 칼라분류 및 에지 클러스터링의 결과를 통합해, 이들 각각의 정보가 갖는 특징을 이용함으로서 도로환경에 적합한 도로영역 및 차선을 검출할 수 있도록 한다. 제안방법은 도로와 차선에 관한 파라미터릭 수학적 모델을 사용하지 않고 칼라 및 에지의 클러스터링 정보에 의한 non-parametric 방법으로 다양한 도로 환경에 유연한 대응이 가능한 장점을 갖는다. 본 제안방법의 유효성을 입증하기 위해 상이한 촬상조건 및 도로환경에서의 영상에 대한 실험결과를 제시한다.

퍼지추론을 이용한 얼굴영역 검출 알고리즘 (Face Region Detection Algorithm using Fuzzy Inference)

  • 정행섭;이주신
    • 한국항행학회논문지
    • /
    • 제13권5호
    • /
    • pp.773-780
    • /
    • 2009
  • 본 논문은 픽셀의 색상과 채도를 퍼지추론한 얼굴영역 검출 알고리즘을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로 구성되었다. 조명보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부 색상 모델에서 계산된 색상과 채도를 특징 파라미터로 멤버쉽 함수를 생성하여 유사도를 평가하였다. 추출된 얼굴 후보영역을 CMY칼라 모델에서 C요소로 눈을 검출하였고, YIQ 칼라 공간에서 Q요소로 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 정면 칼라 영상으로 실험한 결과, 얼굴 영상의 위치와 크기에 관계없이 얼굴 영역이 검출됨을 알 수 있었다.

  • PDF

칼라 페트리 네트를 이용한 랜섬웨어의 모델링 (Modeling of Ransomware using Colored Petri Net)

  • 이요섭
    • 한국전자통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.449-456
    • /
    • 2018
  • 암호화폐의 등장은 해커에게 실제 금전적 이득을 취득할 수 있는 수단이 되었고, 이에 따라 최근 랜섬웨어가 급증하며 관련 피해가 크게 늘어나고 있다. 악성코드가 암호화폐를 만나 새로운 영역으로 확장되고 있으며, 앞으로 랜섬웨어가 더욱 증가할 것으로 예측된다. 이러한 문제들을 해결하기 위해 랜섬웨어의 침입 경로를 분석하여 랜섬웨어의 침입을 탐지하고 차단할 수 있는 모델이 필요하다. 본 논문에서는 최근 랜섬웨어들의 자료를 수집하여, 이를 토대로 랜섬웨어의 칼라 페트리 네트 모델을 작성하고, 분석하고자 한다.

거리정규화 레벨셋을 이용한 칼라객체분할 (Color Object Segmentation using Distance Regularized Level Set)

  • 란 안;이귀상
    • 인터넷정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.53-62
    • /
    • 2012
  • 객체분할은 영상처리와 컴퓨터비전분야의 상당히 어려운 연구대상이다. 그레이스케일 영상에 대한 영상분할은 매우 많은 방법이 발표되었으며 다양한 영상특징과 처리방법이 제시되었다. 이러한 방법들은 대개 자연상태의 칼라 영상에 적용되기 어렵다. 본 논문에서는 기하학적인 Active Contour 모델의 수정된 형태, 즉 거리정규화레벨셋(distance regularized level set evolution: DRLSE)을 이용한 방법을 제시하여 스피드 함수가 이러한 칼라요소를 반영하도록 하였으며 실험결과 정확성과 시간효율성에 있어서 우수한 결과를 보여주었다.

퍼지원리에 기반한 차량 번호판 추출 방법 (A Fuzzy-based License Plate Extraction Method under Real Conditions)

  • 권성진;김경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.850-852
    • /
    • 2005
  • 차량을 포함하는 임의의 영상에서 번호판 추출은 다양한 조명조건 및 배경, 촬영 각도, 번호판 종류 등의 요인으로 인해 고도의 영상처리 과정을 필요로 한다. 본 논문에서는 실제 환경에서 발생할 수 있는 이러한 요인들에 대해 강건한 번호판 추출 방법을 제안한다. 제안하는 방법은 입력영상의 RGB 성분들을 색상성분과 영암성분으로 분리할 수 있는 칼라모델 HSI로 변환하고 H(hue)와 S(saturation)성분을 이용하여 번호판의 배경색상을 고려한 칼라 퍼지지도를 구성한다. 또한, I(intensity)성분을 이용하여 에지밀도를 추출하고 에지밀도 지도에 기반한 영역분리 퍼지지도를 생성한다. 마지막으로, 후보영역 탐색을 위해 칼라 퍼지지도와 영역분리 퍼지지도를 결합하고, 연결성분 해석(Connected Component Analysis)을 통해 ROI(Region Of Interest)를 추출한다. 제안하는 방법의 유효성 검증을 위해 조명 및 촬영 각도에 제한을 거의 두지 않고 촬영된 차량 영상 410장을 실험 영상으로 사용하였다. 실험 결과에서는 $97.1\%$의 효과적인 추출 성공률을 볼 수 있었다.

  • PDF