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ABSTRACT

Image Search is one of the most exciting and fast growing research areas in the filed of multimedia
technology. This paper conducts an empirical evaluation of color descriptor that uses the information of
color distribution in color images, which is the most basic element for image search. With the experimental
results, we observe that in the top 10% of precision, HSV, Daubechies 9/7 and 2 level decomposition have
little better than others. Also histogram quadratic metrics outperform the Minkowski form distance metrics

in similarity measurements, but spend more than 20 in computational times.
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1. Introduction

Large collections of digital images are being
created in many areas of commerce, hospital,
academia and web site. Many of these
collections are the product of digitizing
existing collections of analog photographs,
drawings and prints. These images are
converted to digital from and stored in
image database for later use. Or sometimes
these are the generation from the digital
device such as digital camera. This leads to
issues such as reducing storage space and
querying the database, that is, getting the
information we need from the database as
accurately and quickly as possible [1,2]. The
conventional and currently used method of
image retrieval is searching for a keyword
that would match the descriptive word
assigned to the image by a human
categorizer [3]. Recently research on CBIR
(Content-based Image Retrieval) has received
much attention, and is one of the most
exciting and fastest growing research areas
in the field of multimedia technology
{1,41.CBIR, which is based on automatically
extracted primitive visual features such as
color, texture, shape, and even the spatial
relationship among  objects, has been
employed since the 1990’s [4].

This study compares empirically the retrieval
performance of the
distribution

problem of

weighted  color
descriptor in a challenging
content-based retrieval of
semantic image categories. In this paper, an
empirical estimation of search scheme is
performed with various parameters such as
filters, wavelet
decomposition levels and distance metrics.

color space, wavelet

The remainder of this paper is organized as

follow. In the next section, general image
search algorithm, which is discussed by
JPSearch Ad-hoc group, is presented. We
describe the color descriptor based on color
distribution in section 3. In section 4, we
then present some experimental results of
our image search scheme, and the Ilast
conclusions from these

section draws

experiments.
2. Related Literature on JPSearch

A lot of general-purpose image retrieval
engines have been developed. We can not
survey all related works in the allocated
space. Thus, we try to emphasize come of
the works that are most related to the
standardization, especially mentioned by
JPSearch AHG. This involved two steps [6]:

Stepl. Extracting image features to a
distinguishable extent;

Step2. Matching these features to yield a
result that is visually similar;

Figure 1 shows the traditional approaches to
digital image searching [2]. Image search
system, shown in Figure 1(a), requires each
image to be associated with one or more
keywords entered by human. The second
common form of image search system,
Figure 1(b), uses an image as a query and
attempts to retrieve other images which are
similar. This is accepted state of the art in
content-based image retrieval system from
JPEG standardization JPSearch [2].
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Figure 1. NaiveSystem View of Image Search and
CBIR  (a) Image Search and Retrieval using
Annotation (e.g., keywords) (b) Image Search and
Retrieval using an image as query (e.g., CBIR)

3. Weighted Color Distribution
Extraction

Color is one of the most widely and
extensively used visual features in the image
retrieval [1,6]. This feature is relatively
robust to background complication and
independent of image size, resolution and
orientation. Our image search scheme is
depicted in Figure 2, which is used the
scalable color histogram with weight for
each channels.
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Figure 2. Diagram of Our Image Search Scheme

3.1 Weighted Color Histogram Descriptor

Descriptors for the color feature are mostly
statistics of color distribution, average color
and color moments [5]. Color histogram is
one of the most frequently used color
descriptor that characterizes the color
distribution in an image [7]. WCHD
(Weighted Color Histogram Descriptor) is
compound descriptor consisting of color
space, color histogram, quantization, wavelet
transform and weighted combination of
The step to extract the

visual feature is the following.

feature vectors.

Step1. Given the query image, convert the color space
from original RGB to the desired color model;
Step2. Quantize the given image for processing
efficiency;

Step3. Separate three color channels and compute the
color histogram from the input image;

Step4. Perform the wavelet transform;

Step5. Linear quantization is performed to save the
computation time;

Step6. Generate weighted combined feature vectors;

Step7. Create index and add it to image database;

The first step is color space conversion. We
test three color models: HSV, CIELab,
YCbCr to compare which is more suitable.
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RGB is simple and easy to understand, but
this is not uniform. Human's perception is
more sensitive to green than red and blue,
therefore the three color channels cannot be
divided into the same scale [8]. So RGB is
exception in this case. YCbCr is used in
JPEG2000 standard compression, HSV is
natural and intuitive to human for developing
image processing aigorithm based on color,
and CIELab is the most uniform color space
available [9,10]. The fourth step is wavelet
transform. We estimate four wavelet filters,
which are Haar, Db4, Daubechies 9/7 and
5/3. Haar is
computation time, and Daubechies 9/7 is
used JPEG2000 standard [7,11]. Also we
evaluate five level decompositions in wavelet

simple and efficient to

transform. In sixth step, weight can be
specified for each color channel and we give
the default weight with 1, and then test the
various factors.

3.2 Similarity Calculation

There are two functions for measuring
similarity, one is Minkowski-form distance
metrics and another is Quadratic-form
distance metrics [12]. Minkowski-form
distance, which compares only the same bins
between color histograms, is as follows.

DU, )= Y H,6) - BOT M)

where Iq and It are query image and target
image, b is dimension of feature vector, Hq
and Ht are the color histogram of query
image and target image, respectively. When
r=1, the distance metrics become L1, and
when r=2, the distance metrics becomes the

Euclidean distance. We use L1 norm distance
between two color feature vectors in this
paper.

Quadratic-form  distance metrics, Wwhich
compares not only the same bins but
multiple bins between two histograms, is as
follows [13].

DU, )= (H- BY - A+ (B-H) ()

where A=[agt] is a N*N matrix, N is the
number of bins in the color histograms, and
aq,t is calculated by Equation (3)

6,= 1= (VM + M+ 15 | V5) 3

where M1, M2 and M3 is below.

M= (H,- B

M= () + sin(H, @)= (B G) + sin(H ()
M= (H, (i) + cos(H, (i) — (H,(j) + cos (H, ()

4. Experimental Results

We implemented all approaches using Matlab
70.1. All the response times of our
experiments were measured using a PC
running Windows 2003 Server OS with a
1.8GHz Pentium IV CPU and 512Mbytes
main memory.

4.1 Test Image Dataset

We have built on the image datasets
images
ourselves and downloading on the website
[14]. In this test image database, there are
1,000 different sizes (each of 10KB~700KB)

obtained from producing some



and different resolutions (each of 640x480,
768x480 and 384x256) formatted JPEG
images. The test images were manually
partitioned intc semantic categories by a
human observer. A semantic category
corresponds to a set of images, which he
perceived to convey  similar
meaning, not necessarily
content or spatial structure.

semantic
identical color

4.2 Retrieval Effectiveness

The most common evaluation measures used
in IR (Information Retrieval) are recall and
precision, usually presented as a Precision
and Recall curve [15]. Precision is the
probability of retrieved that relevant to
query, and recall is the probability of
relevant that are retrieved. Let A be the set
of relevant images, B the set of retrieved
images. Then recall and precision are defined
as the following conditional probabilities

[11,12].

_ _P(4NB) _ a
recdll = P(Bl4)= —pr== —— ©)
precisin = P(4|5)=LUDE - 4 )

where a is the number of retrieved relevant
images, b is the number of retrieved
irrelevant images and c is the number of
un-retrieved relevant images.

A  semantic category is only wused in
calculating the recall and precision for the
effectiveness. It is known whether any two
images in the same category are similar to
query results.

4.3 Results

Each image of the twenty-eight semantic
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categories served as the query image in
turn, ie. 1,000 queries were performed in
total. This way we obtain more reliable
estimates on retrieval performance, in
comparison to experiments where the results
are based on a small number of queries, for
example MPEG-7 Ground Truth Sets.

Figure 3shows retrieved results of ranking
through 5%, 10%, 20% and 50% of whole
image database with PR curve. Test image
collection has 1,000 images, so then the
numbers of resuits with ranking are 50, 100,
200 and 500, respectively. We observe that
in the top 5% of recall, which is relevant in
practical evaluation, HSV color space shows
the best performance for retrieval under
same other conditions (e.g., Daubechies 9/7
wavelet filter, 2 level decomposition and L1
as similarity measure function with same
weight as each channels), shown in Figure
3(a). And the performance of wavelet filter
ranks in the following order: Daubechies 9/7,
5/3, Db4 and Haar, but Haar is little better
than others on computing time, shown in
Figure 3(b). In the case of wavelet
decomposition level, 2 level is best and
others rank in the following order: 3,145,
shown in Figure 3(c).
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Figure 3. Retrieval Effective with PR Curve: (a)
Comparison to color space on same other parameters (such
as wavelet transform filter and similarity function) : red
line is YCbCr, green is HSV and blue is RGB (b)
Comparison to wavelet filter on same other parameters
(such as color space and similarity function) : red is
Dauchies9/7, green is 5/3 and blue is haar. (c) Comparison
to wavelet decomposition level : red is 1, green is 2, blue
is 3, magenta is 4 and cyan is 5 level decomposition.
Feature vector dimension and processing
time are shown in Table 1 and the numeric
results on the average time column are
collected by an average of three times for
each query image. Considering the difficulty
of the problem, our image search scheme
achieves a decent 35% average precision in
retrieving the top 5% of the images from the
semantic category of the query image.

Table 1. Image Search Results

Average Retrieval
Processing Time Effectiveness
[sec/image] with Top 5%
Extract Feature Vectors 0.24
Recall 68%
N L1 Norm 0.45 Precision 33%
Similarity
Matching | o adratic 250 Recall 70%
Metrics ’ Precision 35%

5. Conclusion and Future Works

Color is a feature of the great majority of
content-based image retrieval systems.
However, the robustness, effectiveness and
efficiency of its use in image indexing are
still open issues [1]. In this paper, our study
compared the performance of weighted color
distribution descriptor. The experimental
results were carried out that the HSV,
Daubechies 9/7, 2-level decomposition have
little better than others at the color space,
wavelet filter and wavelet decomposition
level, respectively. And L1 metric is enough
to use as a similarity measurement,
compared with Quadratic distance metric, for
computational reasons.

The experiments confirm that the image
spatial organization of color is additional
information to retrieve the similar. For this
reason, some of spatial information is more
necessary to decide whether color image is
similar or not. This spatial information can
be color layout descriptor, used in MPEG-7
Visual [7,11], or color auto-correlogram,
which express how the spatial correlation of
pairs of color changes with distance [16].
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