• Title/Summary/Keyword: 카메라 자체 검정

Search Result 12, Processing Time 0.022 seconds

A Photogrammetric Network and Object Field Design for Efficient Self-Calibration of Non-metric Digital Cameras (비측정용 디지털 카메라의 효율적인 자체 검정을 위한 대상지 구성)

  • Oh Jae-Hong;Eo Yang-Dam;Lee Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.281-288
    • /
    • 2006
  • Recent increase in the number of pixels of a non-metric digital camera encourages to use it for close-range photogrammetry such as modeling cultural asset and buildings. However, these cameras have to be calibrated far close-range photogrammetry application. For self-calibration, an appropriate pbotograrnmetric network and object field should be designed. In this paper, we studied the effect on self-calibration accuracy changes according to the change of the number of ground control points, dimensions of the ground control points, and the combination of images. We concluded that self-calibration with three photos including a vertical photo can give the stable accuracy of interior orientation parameters and 10 ground control points on a plane can give high accuracy for object reconstruction.

Accuracy of Close-Range Industrial Photogrammetry Using CCTV Type CCD Camera (CCTV유형 CCD 카메라를 이용한 근거리 산업사진측량의 정확도)

  • 이진덕;최용진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.283-290
    • /
    • 2001
  • This paper demonstrates the performance of industrial precise measurement using the digital close-range photograrmmetric system based on a off-the-shelf CCTV-type CCD camera. The system was constructed with a CCD camera and a PC with a frame grabber, coupled with digital image mensuration and self-calibrating bundle adjustment techniques. An artificial fish reef with cubic shape was taken as an object for the application test of the system and the digital images were acquired on multi-station convergent network around the object. The geometric calibration of the CCD camera and the phototriangulation of the entire surface of the object was carried out simultaneously by means of self-calibrating bundle adjustment technique. Also the system comprising a high resolution still-video camera Kodak DCS, which high accuracy potential has been already established, were employed in similar network condition. Then the results from two different camera systems were compared in the accuracies of phototriangulation.

  • PDF

Effective Application of Close-Range Photogrammetry with Digital Images in Industrial Precise Measurement (산업정밀측정에서 수치영상을 이용한 근접사진측량의 효율적 응용)

  • 이진덕
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 1996
  • The development of still video CCD cameras has simplified dramatically the digital imaging process. Still video cameras have flexibility that allows digital image acquisition and on-board image storage without being connected to a computer. The objective of this paper is to evaluate the performance of digital close-range photogrammetric system using the still video camera for dimensional inspection and structural monitoring being required in various industries. Some sub-pixel measurement techniques, which is indispensable for digital image measurement, were suggested. The author carried out the self-calibration of a high resolution DCS420 still video camera and then test application of a structure. The self-calibrating bundle adjustments resulted in object space accuracies which exceed 1 :46,000. It is ascertained that this digital close-range photogrammetric system has high accuracy potential and task effectiveness for industrial applications.

  • PDF

In-situ Self-calibration of Non-metric Camera and Digital Stereo Plotting for Public Survey (공공측량 적용을 위한 비측정용 카메라의 현장자체검정 및 수치 입체 도화)

  • Seo, Sang-Il;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.145-154
    • /
    • 2017
  • In recent years, demand for 1 / 1,000 digital map production has increased in various fields such as construction and urban planning. As a result, the use of low-cost non-metric cameras that replace expensive aerial photogrammetry equipment is required. In Korea, researches are being continuously carried out to produce a large scale digital map by photographing a small target area with a non-metric camera. However, due to the limitation of the accuracy of the non-metric camera, it is difficult to do digital mapping with stereoscopic photographs. In this study, we tried to verify the possibility of large-scale digital mapping to utilize non-metric camera for public survey. For this purpose, the accuracy of the digital mapping results of the non-metric camera and the results of the DMC camera were compared and analyzed. After performing in-situ self-calibration including 8 standard additional parameters, we plotted to a scale of 1/1,000 and confirmed that the RMSE is suitable for public survey accuracy of ${\pm}0.145m$ in horizontal and ${\pm}0.153$ m in vertical.

Analysis on 3D Positioning Precision Using Mobile Mapping System Images in Photograrmmetric Perspective (사진측량 관점에서 차량측량시스템 영상을 이용한 3차원 위치의 정밀도 분석)

  • 조우석;황현덕
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.431-445
    • /
    • 2003
  • In this paper, we experimentally investigated the precision of 3D positioning using 4S-Van images in photograrmmetric perspective. The 3D calibration target was built over building facade outside and was captured separately by two CCD cameras installed in 4S-Van. After then, we determined the interior orientation parameter for each CCD camera through self-calibration technique. With the interior orientation parameter computed, the bundle adjustment was performed to obtain the exterior orientation parameters simultaneously for two CCD cameras using calibration target image and object coordinates. The reverse lens distortion coefficients were computed and acquired by least squares method so as to introduce lens distortion into epipolar line. It was shown that the reverse lens distortion coefficients could transform image coordinates into lens distorted image coordinates within about 0.5 pixel. The proposed semi-automatic matching scheme incorporated with lens distorted epipolar line was implemented with scene images captured by 4S-Van in moving. The experimental results showed that the precision of 3D positioning from 4S-Van images in photograrmmetric perspective is within 2cm in the range of 20m from the camera.

Experiment on Camera Platform Calibration of a Multi-Looking Camera System using single Non-Metric Camera (비측정용 카메라를 이용한 Multi-Looking 카메라의 플랫폼 캘리브레이션 실험 연구)

  • Lee, Chang-No;Lee, Byoung-Kil;Eo, Yang-Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.351-357
    • /
    • 2008
  • An aerial multi-looking camera system equips itself with five separate cameras which enables acquiring one vertical image and four oblique images at the same time. This provides diverse information about the site compared to aerial photographs vertically. The geometric relationship of oblique cameras and a vertical camera can be modelled by 6 exterior orientation parameters. Once the relationship between the vertical camera and each oblique camera is determined, the exterior orientation parameters of the oblique images can be calculated by the exterior orientation parameters of the vertical image. In order to examine the exterior orientation of both a vertical camera and each oblique cameras in the multi-looking camera relatively, calibration targets were installed in a lab and 14 images were taken from three image stations by tilting and rotating a non-metric digital camera. The interior orientation parameters of the camera and the exterior orientation parameters of the images were estimated. The exterior orientation parameters of the oblique image with respect to the vertical image were calculated relatively by the exterior orientation parameters of the images and error propagation of the orientation angles and the position of the projection center was examined.

Empirical Modeling of Lens Distortion in Change of Focal Length (초점거리 변화에 따른 렌즈 왜곡의 경험적 모델링)

  • Jeong, Seong-Su;Woo, Sun-Kyu;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.93-100
    • /
    • 2008
  • The parameters of lens such as focal length, focus, and aperture stop changes while shooting the scenes with zoom lens. Especially, zooming action dramatically changes the geometry of lens system that causes significant change of lens model. We investigated how the lens model changes while zooming in general shooting condition. Each parameters of lens model was estimated and checked whether they can be modeled well in the condition of auto-controlling focus, aperture and vibration reduction. In order to do this, calibration images were taken, modeled in different fecal length setting. And changing patterns of models were inspected to find out if there is some elements that have some particular pattern in changing with respect to focal length. The result showed us that although we didn't control the focus and aperture setting, there's specific changing patterns in radial and do-centering distortion. Especially, the strong linear correlation was found between coefficient of $r^2$ and focal length. It is expected that many parts of distortion can be eliminated without additional self calibration even if zoom operation is done when shooting the scenes if we know its fecal length and model of this coefficient.

Accuracy Analysis of Close-Range Digital Photogrammetry for Measuring Displacement about Loading to Structure (하중에 따른 구조물 변위계측을 위한 근접수치사진측량의 정확도 분석)

  • Choi, Hyun;Ahn, Chang Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.545-553
    • /
    • 2009
  • This paper describes the result of study on measurement of displacement of structure by means of non-contacting method, close-range digital photogrammetry using digital camera. To apply close-range digital photogrammetry to displacement measurement of structure, correction of lens distortion that interferes geometrical analysis has been carried out and then measuring displacement was performed on load regulated-rahmen. For enhanced applicability of displacement measurement, MIDAS which is a structural analysis program was used for modeling and the result was taken from comparative analysis. As a result of the study, it is showed that close-range digital photogrammetry could supplement several weaknesses of LVDT and cable displacement meter and, especially, economy in the perspective of measuring time could be realized. Close-range digital photogrammetry using digital camera can be applied to the area where requires visual analysis such as 3D modeling of structure, profile replication of measurement of structure as well as measurement of displacement of structure.

A Study on Efficient Self-Calibration of a Non-Metric Camera for Close-range Photogrammetry (근접 사진측량을 위한 효율적인 비측정카메라 캘리브레이션)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.511-518
    • /
    • 2012
  • It is well-known that non-metric digital cameras have to be calibrated for the close-range photogrammetry. But, the self-calibration is still not an easy task because it requires rather a large calibration site of accurate control points, multiple image acquisitions in different positions, and accurate image point measurements that are quite labor-intensive and time-consuming. Based on the premise, this study carried out check point accuracy analysis from self-calibration of different control point designs and photo combinations. The test results showed that the calibration using three photos covering three-dimensional control points produced high accuracy, but control points on a plane could attain the comparable accuracy with four photos including a 90-degree rotated photo. We then compared the target accuracy of on-site self-calibration using flat control points to that of laboratory-self calibration and observed comparable results.