• Title/Summary/Keyword: 침하량 산정식

Search Result 74, Processing Time 0.025 seconds

Proposal of Equations related to Settlement and Lateral Movement According to Embankment on Marine Sedimentary Ground (해성퇴적지반에서 성토로 인한 침하량과 측방유동량 산정식 제안)

  • Kim, Kyeong-Su;Chung, Dae-Seouk;Lee, Jong-Gil
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.191-202
    • /
    • 2010
  • In this study, the relationship between the settlements and the horizontal displacements according to embankment was analyzed at the marine sedimentary grounds for preparation of a site, and then the empirical equations of both the settlement and the horizontal displacement considering the embankment load and the thickness were proposed. To do this, the field and laboratory tests were performed at the improvement section where the pre-loading method was applied, and the field monitoring was performed using various sensors. Based on the results of the tests and monitoring, the ground deposits, soil characteristics and engineering properties were analyzed and the settlements and lateral movements were estimated by the Regression analysis. The ground deposits from the ground surface were composed of reclaimed soils, sedimentary soils and based rocks. The thickness of clay in the sedimentary soils layer was ranged from 3.9 m to 44.5 m. The embankment heights to improve the ground during pre-loading were constructed from 4.7 m to 7.8 m in each section. The settlements during embankment were ranged from 0.959 m to 2.217 m and the lateral movements were ranged from 0.048 m to 0.313 m. As the result of regression analysis, the equations of settlements and horizontal displacements according to embankments may be proposed as $s=0.02h^2+0.11h$ and ${\delta}=0.01e^{0.37h}$, respectively. The proposed empirical equations of the settlements and the horizontal displacements according to embankment on the marine sedimentary ground may be applied to the site where has a similar condition of study area.

Model Tests on the Bearing Capacity and Settlement of Footing Considering Scale Effect (Scale Effect를 고려한 기초의 지지력 및 침하량 산정을 위한 모형실험)

  • 정형식;김도열;김정호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.343-354
    • /
    • 2003
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from Plate-Load Test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were performed with four different sizes of square plate, which are B=10, 15, 20 and 25cm, on five different kinds of subsoil. Based on the analyzed results, this paper also proposes a method of bearing capacity and settlement determination, where scale effect is considered depending on the mixing ratio of sand and clay. Until now, uneconomic constructions have been conducted because of unreasonable evaluation in estimating bearing capacity and settlement of footings from Plate-Load Test in fields. In the application of the formula proposed in this research to field problems, it is expected that evaluation of bearing capacity and settlement of footings can be more reliable and more economic construction can be achieved.

다단형 도시폐기물 매립지의 침하모델 계수 분석

  • 김용인;손영중;장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.192-197
    • /
    • 2004
  • 폐기물 매립층의 침하는 매립 폐기물의 조성특성의 영향으로 인하여 침하특성이 일반 흙의 토질역학적 거동과 다르게 나타난다. 폐기물의 침하특성은 매립당시 나타나는 폐기물 하중에 의한 침하특성과 향후 장기적으로 유발되는 생화학적 침하특성을 구분하여 규명하는 것이 필요하다. 본 연구에서는 국내 대표적 매립지 폐기물 침하에 대한 계측자료를 바탕으로 역학적 일차 압축침하와 생화학적 이차 압축침하에 대한 침하특성계수를 산정하였다. 또한 Sower(1973)의 매립지 폐기물에 대한 침하량 산정식을 응용하여 다단형 매립지 폐기물에 적용할 수 있는 침하량 산정식을 구성하였다.

  • PDF

An Experimental Study to develope the Subsidence Equation for Riprap Protection around the Pier (교각에 설치된 사석보호공의 침하량 산정식 도출에 관한 실험 연구)

  • Ji, Un;Yeo, Woon Kwang;Lee, Won Min;Kang, Joon Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.63-71
    • /
    • 2009
  • Riprap filter should be installed around the pier to prevent riprap subsidence due to sediment winnowing or leaching between the riprap and bed layers. However, riprap protection without filters is commonly applied in the field because of ambiguous specifications and technical and economical difficulties to install the filter layer. Therefore, the hydraulic experiments were conducted in this study to measure and analyze the riprap subsidence quantitatively with different conditions for thickness of riprap layer, approached velocity, sizes of riprap and bed material. As the velocity was increased and size of bed material and thickness of riprap layer were decreased, the subsidence was increased. Consequently, the dimensionless riprap subsidence equation was derived using the synthesized experimental results. The results of this study could be employed as a standard criterion or predictor to evaluate the subsidence stability.

Consolidation Settlement in One-Dimensional Condition Considering the Variation of Initial Effective Stresses with Depth (깊이 별 초기유효응력 차이를 고려한 1차원 압밀침하량 산정공식)

  • Yune, Chan-Young;Kim, Ju-Hyong;Oh, Myoung-Hak;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.273-282
    • /
    • 2008
  • A series of analytical formula to compute settlements accounting for possible variations of initial effective stresses were derived. The comparison of computed values from conventional and newly-derived equations shows that computed settlements via the conventional equation unrealistically vary with the chosen number of layers in a clay stratum and also are 45~100% less than the value obtained from the newly-derived equation with exact mathematical integration.

A Study on the Load Sharing Ratio and the Settlement of Prebored Open-Ended Steel Pipe Piles (매입 개단 강관말뚝의 하중분담률과 침하량 분석 연구)

  • Chea min Kim;Ki hwan Kim;Do kyun Yoon;Youngkyu Choi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.39-51
    • /
    • 2023
  • The bearing capacity of the prebored pile has been studied by many researchers. However, The bearing capacity of the prebored pile has been studied by many researchers. However, comparative studies between design data and pile load test data on the load sharing ratio and the settlement were insignificant. Therefore, the design data and the static load test results were compared for the prebored open-end steel piles. In the compressive static pile load test, the load sharing ratios of the base resistance and the shaft resistance were 13%~40% and 60%~87%, respectively and the settlements were measured 2.2mm~4.7mm. In the current bearing capacity calculation formula, the base resistance was shared between 54% and 75%, and the shaft resistance was shared between 25% and 46% and the settlements were calculated about 19.8mm~23.6mm. The settlement in the current bearing capacity calculation formula was 321% to 776% (average : 445%) larger than the settlement in the result of load test. When the settlement were calculated using the load sharing ratio in the pile load tests, it was 137% to 525% larger than the test settlement, and it was as large as 204% on average. It was confirmed that an appropriate evaluation of the load sharing ratio had an important effect on the calculation of pile settlement.

An Experimental Study on the Relationship between Deformation and Relative Settlement for Weathered-granite (화강풍화토의 변형계수와 상대침하 관계식에 관한 실험적 연구)

  • Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.4 no.1
    • /
    • pp.125-131
    • /
    • 2013
  • To predict the real bearing capacity and settlement of the shallow foundation the plate load test results were used. But there is no field estimation method about igneous weathered soil and rock. Therefore, to predict the settlement equation, the plate load test about igneous weathered soil and rock was done in this study. To analyze the load ~ relative settlement curve by normalization, it did not use normal analysis method, but the load ~ relative settlement (s/B, s : settlement, B : breadth of plate) was used. As a result of normalization by load ~ relative settlement conception, the curve was regular regardless of plate diameter and it was suggested the relationship of in-situ soil condition and results.

A Study on the Modified N-value by the Comparison Plate Load Test with Calculated Settlement (평판재하시험과 이론적 침하량 예측식의 비교를 통한 N치 보정방법 검토)

  • Ahn, Chang-Yoon;Kim, Won-Cheul;Hwang, Young-Cheol;Nam, Hyun-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.25-34
    • /
    • 2005
  • The governing design point of shallow foundation is not its bearing capacity but its settlemen and N-value by the SPT is one of the key parameters for settlement estimation. However, if the N-value is more than 50/30, such as 50/10 or 50/20, the N-vlaues are not blow count of 30cm depth penetration. In these cases, the estimated settlements have big difference with the measured values because the applied maximum N value for the settlement estimation is 50. Therefore, in this study, the modified method for N-value estimation is suggested. The settlements by four methods, which are based on Elastic Theory with application of modified N-value, are compared with the Origina Plate Load Test data. The same comparision was carried out with another seven Empirical Methods. The result of this study showed that the error range of settlement is decreased from 260.4~2136.5% to 20.3~272.7%. Among four methods which are based on Elastic Theory, the original method by Elastic Theory is the most accurate with the application of modified N-value. Among Empirical Methods, Terzaghi-Peck's(1948, 1967) modified method 1 is the most accurate with the application of modified N-value. The differences between the original method by Elastic Theory and Terzaghi-Peck's(1948, 1967) modified method 1 are neglectable.

  • PDF

Settlement Evaluation of Caisson-Type Quay Wall Using PSI of Velocity During Earthquake (지진시 속도의 PSI를 활용한 케이슨식 안벽의 침하량 평가 )

  • Gichun Kang;Hyunjun Euo;Minje Baek;Hyunsu Yun;Jungwook Choi;Seong-Kyu Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.71-83
    • /
    • 2023
  • It is very important to predict the amount of settlement in order to maintain the function of the coastal structure. Finite element analysis methods and real and model experiments are used as methods for this, but this has the disadvantage of requiring a lot of cost and time. Therefore, this study was conducted for the purpose of a simple formula proposal that can easily predict the amount of settlement of the caisson-type quay wall structure. In the research process, after calculating the PSI (Power Spectrum Intensity) of the velocity, the amount of settlement of the structure is calculated by substituting it into the simple formula of the existing gravity breakwater. By comparing and analyzing the amount of settlement of the structure obtained through numerical analysis, it was confirmed that the error between the amount of settlement of the existing simple formula and the amount of settlement of the numerical analysis was large, and it was confirmed that the background could not be considered in the case of the existing simple formula. Therefore, this study proposed a correction factor for the background of the quay wall structure, indicating a simple formula that can obtain the amount of settlement of the caisson-type quay wall structure. Compared to the numerical analysis settlement amount, it was judged that this simple formula had sufficient precision in calculating the caisson-type quay wall settlement amount. In addition, facilities vulnerable to earthquake resistance can be easily extracted in situations where time and cost are insufficient, and it is expected to be used as a screening technique.

A Study on Settlement according to Height and Ground stiffness on the MSEW on the IPM Bridge (토압분리형 교량의 보강토옹벽의 높이와 기초지반 강성에 따른 침하량 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • The mechanically stabilized earth wall (MSEW) of the IPM bridge is an important structure that constitutes the bridge, and supports the horizontal earth pressure and approach slab. Therefore, it is necessary to carefully analyze the settlement of MSEW of the IPM bridge. This study examined the settlement according to the height and ground stiffness on the MSEW on the IPM Bridge. According to the design guideline, the IPM Bridge (2016) was designed to have a height of 4.0 ~ 10.0m and the elastic settlement was calculated. The base area and the grounding pressure of the MSE wall increased linearly with the height, and the elastic settlement also increased linearly. In addition, the stiffness of the foundations satisfying the allowable settlement of the approach slab is a N value of 35 or more. The settlement of finite element analysis was estimated to be smaller than the elastic settlement, and the stiffness of the foundation ground satisfied the allowable settlement of the approach slab above N value of 20. Because the elastic settlement of the MSEW of the IPM Bridge was overestimated, it will be necessary to examine it carefully by finite element analysis.