• Title/Summary/Keyword: 침투저항성

Search Result 291, Processing Time 0.028 seconds

TREATMENT OF FASCIAL SPACE ABSCESS IN THE OROMAXILLOFACIAL REGION WITH INTRACANAL DRAINAGE (두경부악안면 근막극 농양 환아에 있어서 근관내 배농을 통한 치료)

  • Park, Jae-Oh;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.623-629
    • /
    • 1999
  • The definition of fascial spaces are latent spaces between fascial planes. If infections which spread from dental origin to soft tissue are mild, they are restricted by fascial planes. But, when infections are severe, fascial spaces are often used as a natural pathway which spread to the deep cervical region. If they are not treated at early stage, they may result in the fatal complications as followings; airway obstruction, septicemia, cerebral abscess, and thrombophlebitis etc. The early treatment of fascial space abscess is very important for young children. These case reports present the successful result of fascial space abscess treatment through intracanal drainage without surgical excision. It is proven that the treatment through intracanal drainage has some benefits to the surgical excision, which are as follows: 1) It is economic to the patients or their parents avoiding admission. 2) The treatment procedure is more simple. 3) Childrens can avoid the fearful environment.

  • PDF

Electrical Property of Immobilized SWNTs Bundle as Bridge between Electrodes in Nanobiosensor Depending on Solvent Characteristics (시료용액의 특성에 따른 고정화된 단일벽 탄소나노튜브의 전기적 거동)

  • Lee, Jinyoung;Cho, Jaehoon;Park, Chulhwan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.115-120
    • /
    • 2017
  • In recent, it is worldwide issued that nanoscale science and technology as a solution have supported to increase the sensing performance in carbon nanotube based biosensor system. Containing material chemistry in various nanostructures has formed their high potentials for stabilizing and activating biocatalyst as a bioreceptor for medical, food contaminants, and environmental detections using electrode modification technologies. Especially, the large surface area provides the attachment of biocatalysts increasing the biocatalyst loading. Therefore, nano-scale engineering of the biocatalysts have been suggested to be the next stage advancement of biosensors. Here, we would like to study the electrical mechanism depending on the exposure methods (soaking or dropping) to the sample solution to the assembled carbon nanotubes (CNTs) on the gold electrodes of biosensor for a simple and highly sensitive detection. We performed various experiments using polar and non-polar solutions as sampling tests and identified electrical response of assembled CNTs in those solutions.

A Study on the Estimation for the Flow Coefficient of Elevator Shaft (엘리베이터 샤프트의 유량계수 산정에 관한 연구)

  • Kim, Hak-Joong
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.148-157
    • /
    • 2012
  • Recently, evacuation safety of building residents becomes the major concern, as the building has been higher and more complicated. Many high-rise multi use buildings are under construction in Korea. Required evacuation time using stairway is longer in high-rise buildings, moreover it is impossible for the disabled to evacuate by using stairway. For this reason the study on the effectiveness of using elevator for evacuation is being progressed. Elevator shaft flow coefficient is the major factor for the calculation of elevator piston effect. The results of this study can be used for the study of elevator piston effect as basic data. The flow coefficient simulation was performed using FLUENT, commercial CFD program. As a result of the flow coefficient simulation, the coefficient is 0.88 considering the safety factor. This result is verified that the result of experimental study, 0.86 is conservative.

Cracking and Durability Characteristics of High-early-strength Pavement Concrete for Large Areas using Calcium Nitrate (질산칼슘 혼화재를 사용한 대단면 급속 포장 콘크리트의 균열 및 내구특성)

  • Won, Jong Pil;Lee, Si Won;Lee, Sang Woo;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.101-108
    • /
    • 2009
  • The performance of high-early strength pavement concrete for large areas is influenced by the physical and chemical environment during service life. Generally, penetration, diffusion, and absorption of harmful materials that exist outside the concrete cause damage to its structure. Thus, we have to use a mixture for durability to keep the required quality for the planned service life. Moreover, in using high-early-strength cement and accelerators, a high heat of hydration to create the initial strength can cause cracks. Based on evaluations from optimal mix proportions of high-early-strength pavement concrete for large areas, we conducted water permeability, abrasion resistance, freeze-thaw, plastic, drying, and autogenous shrinkage tests. Test result showed that a mix of accelerator and PVA fibers showed excellent performance.

Effects of Magnesium on Sulfate Resistance of Alkali-activated Materials (알칼리 활성화 결합재의 황산염 침식에 미치는 마그네슘의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Ra, Jung-Min;Kim, Hyung-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.109-116
    • /
    • 2017
  • This paper describes the investigation into the durability alkali-activated materials(AAM) mortar and paste samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS) exposed to a sulfate environment with different GGBFS replace ratios(30, 50 and 100%), sodium silicate modules($Ms[SiO_2/Na_2O]$ 1.0, 1.5 and 2.0). The tests involved immersions into 10% sodium sulfate solution($Na_2SO_4$), 10% magnesium sulfate solution($MgSO_4$), 10% magnesium nitrate solution($Mg(NO_3)_2$) and 5% magnesium nitrate($Mg(NO_3)_2$+5% sodium sulfate solution+$Na_2SO_4$). The evolution of compressive strength, weight, length expansion and microstructural observation such as x-ray diffraction were studied. As a results, in case of immersed in $Na_2SO_4$, $Mg(NO_3)_2$ and $Mg(NO_3)_2+Na_2SO_4$ shows increase in long-term strength. However, for samples immersed in $MgSO_4$, the general observation was that the compressive strength decreased after immersion. The most drastic reduction of compressive strength and expansion of weight and length occurred when GGBFS or Ms ratios were higher. Also, the XRD analysis of samples immersed in magnesium sulfate indicated that expansion of AAM caused by gypsum($CaSO_4{\cdot}2H_2O$) and brucite(MgOH). The results showed that, an additional condition $Mg^{2+}$ in which ${SO_4}^{2-}$ is the presence of a certain concentration, sulfate erosion has to be accelerated.

Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System (Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동)

  • Park Sang-Yeol;Cho Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.451-458
    • /
    • 2004
  • This study describes the basic concept and the applicability of Hybrid Reinforcement System using conventional steel reinforcing bars and Fiber Reinforced Polymer bars. The concrete bridge decks are assumed to be supported by beams and reinforced with two layers of reinforcing bars. In concrete bridge deck using HRS, the top tensile force for negative moment zone on beam supports is assumed to be resisted by FRP reinforcing bars, and the bottom tensile force for positive moment zone in the middle of hem supports is assumed to be resisted by conventional steel reinforcing bars, respectively. The FRP reinforcing bars are non-corrosive. Thus, the steel reinforcement is as far away as possible from the top surface of the deck and protected from intrusion of corrosive agent. HRS concrete bridge deck has sufficient ductility at ultimate state as the following reasons; 1) FRP bars have lower elastic modulus and higher ultimate strain than steel re-bars have, 2) FRP bars have lower ultimate strain if provided higher reinforcement ratio, 3) ultimate strain of FRP bars can be reduced if FRP bars are unbonded. Test results showed that FRP and HRS concrete slabs are not failed by FRP bar rupture, but failed by concrete compression in the range of ordinary reinforcement ratio. Therefore, in continuous concrete bridge deck using HRS, steel reinforcing bars for positive moment yield and form plastic hinge first and compressive concrete fail in the bottom of supports or in the top of the middle of supports last. Thus, bridge deck consumes significant inelastic strain energy before its failure.

Efficiency Test for Surface Protecting Agents for the Chemical Resistance of Concrete Structures Using Sulfur Polymers (Sulfur Polymer를 사용한 콘크리트 구조물용 내화학성 표면보호재의 성능 평가)

  • Lee, Byung-Jae;Lee, Eue-Sung;Chung, Woo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2014
  • Structures requiring chemical resistance are usually coated with surface protecting agents, but the cost for maintenance and re-construction is incurred due to the low durability. Therefore, in this study, sulfur was polymerized and the performance was examined so that it could be used as the concrete surface protecting agents for structures requiring chemical resistance. The evaluation results indicated that for the spray of the sulfur polymer surface coating agents, the application of the gravity type was appropriate; and for the number of coating times, about 3 cycle spray gave the best results. For the surface condition of the concrete to be coated with the surface protecting agents, outstanding quality was obtained above room temperature ($20{\sim}30^{\circ}C$), and the bond strength increased as the temperature increased. The evaluation results of the strength characteristics depending on the filler content of the surface protecting agents indicated that about 20~40% filler mixing contributed to the strength improvement as it reduced the shrinkage of the sulfur polymer. Also, the mixing of silica showed larger increase in the bond strength than the mixing of fly ash, and the most outstanding bond strength characteristics could be obtained by the mixing of both silica and fly ash. In the case of the chemical resistance, the strength reduction was minimized and outstanding chemical resistance was obtained when the fly ash and silica were substituted by 20%, respectively. The performance evaluation of the chloride ion penetration indicated that for the specimens coated with the sulfur polymer surface protecting agents, the chloride ion penetration resistance increased by 29~48% compared to the specimen without the coating of the surface protecting agent. The examination of the coating condition of the surface protecting agents, compressive strength, bond strength, chemical resistance, and salt damage resistance indicated that in the range of this study, the optimal level was when the silica and fly ash were substituted by 20%, respectively, as the filler for the sulfur polymer.

A Development of concrete Pavement Material with Low Shrinkage and Reflection, High Strength and Performance (저수축 저반사 고강도 고내구성 콘크리트 포장재료 개발)

  • Kim, Hyo-Sung;Nam, Jeong-Hee;Eum, Ju-Yong;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.13-24
    • /
    • 2009
  • This study developed a high strength and performance concrete pavement material with low shrinkage and reflection of sunlight. Based on the literature review, a new mix-design of applying flash ash to improve the strength and performance of the concrete as well as to reduce the dry shrinkage is suggested. In addition, adding black pigment to reduce the reflection and technique of applying OAG (Optimized Aggregate Gradation) is also included. The result of the laboratory experiment indicates that the brightness and the reflection, which depends on the ratio of black pigment addition, did not deviate from the normal range. When OAG is considered for the mix-design, the strength and performance of the concrete improved greatly. In addition, the mix-design using fly ash reduced the dry shrinkage of concrete and improved the resistance to the permeation of chloride ion. Furthermore, the mix-design, which uses fly ash (25% replacement) and black pigment (3% addition) with the application of OAG, is found to be the most effective mix to reduce the shrinkage and reflection as well as improving the strength and performance of the concrete. The result of an economic analysis indicates that the initial construction cost of this proposed mix is more expensive than that of normal concrete pavement material. However, it can be more economic in the long run because the normal concrete pavement material is likely to cost more due to higher probability of maintenance and repair and higher social cost due to traffic accident, etc.

  • PDF

Evaluation of Steel Corrosion and Flexural Strength Coated with Cementitious Repair Material (시멘트계 보수재료로 코팅된 강재의 부식 및 휨강성 평가)

  • Yoon, Yong-Sik;Kim, Tae-Sang;Kim, Ho-Ryong;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.243-249
    • /
    • 2016
  • The present work is for an evaluation of resistance to corrosion in steel coated with cementitious repair material, so that 3 cases of steel plate(Normal, Welding, Welding & coating case) are subjected to ICM(Impressed Current Method) for acceleration of corrosion for 7days. Tested and estimated corrosion ratio through Faraday's Law are compared, and the related flexural strength are evaluated. In Normal and Welding cases, similar level of corrosion ratio(70%) is evaluated, however only 17% level of corrosion ratio is evaluated in the Welding & coating case, which indicates that cementitious repair material is effective to anti-corrosion due to a block of chloride penetration. The flexural test results are consistent with those in accelerated corrosion test, which shows a significant flexural strength in Welding & coating case by 3.4times greater than the others. The cementitious material repair coating is evaluated to be effective to anti-corrosion in welding of steel plate.

An Experimental Study on the Durability Properties of Repair Mortar for Sewer Spread with Liquefied Antibiotic (액상 항균제를 도포한 하수시설용 단면복구재의 내구특성에 관한 실험적 연구)

  • Lee Dong-Heck;Jang Jae-bong;Na Chul-Sung;Cho Bong-Suk;Kim Jae-hwan;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.211-214
    • /
    • 2005
  • Recently, Deterioration of the concrete sewer concrete structures by biochemical corrosion has been issued and a development of the inhibition system of corrosion that has been demanded. The sulfuric acid may react with the hardened cement paste and originate expansive products which can induce swelling and breakless of concrete. Also, a sulphuric acid reacts with calcium hydroxide to from $CaSO_4\;\cdot\;2H_2O$. This reaction accounts for consumption of the calcium hydroxide present in hardened cement paste. In this study, To present from biochemical corrosion of the sewer repair mortar that was spread with liquefied antibiotic and then its experimental properties were experimentally investigated and to estimate the effect of absorbed condition of restorative mortar, the number of coating times and coating contents with antibiotic on the durability properties of restorative mortar spread with antibiotics. Also, testing items such as carbonation depth, choloride ion penetration depth and chemical resistance was tested to estimate the durability properties in third study. In results, the novellus bacillus inhabiting in sewer concrete structures was restrained by antibiotics developed in this study. And carbonation depth, choloride ion penetration depth and chemical resistance of restorative mortar spread with antibiotics was superior to that of plain mortar.

  • PDF