• Title/Summary/Keyword: 침투거동해석

Search Result 145, Processing Time 0.02 seconds

Numerical Analysis on the Behavior of a Slope with Upward Drainable Soil Nails during Rainfall (수치해석을 통한 상향식 배수겸용 쏘일네일링에 대한 강우모형사면 거동 연구)

  • Kim, Young-Nam;Lee, Choul-Kyu;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.11-22
    • /
    • 2014
  • In this study, numerical analyses and model tests were conducted to figure out the behavior of a slope reinforced by upward drainable soil nails during rainfall. The model tests were carried out on both reinforced and unreinforced slopes. To verify the results of the tests, seepage analyses were performed and compared with the test results using a commercial program, SEEP/W. The results showed that the numerical analyses have in overall a good agreement with the experiments in the variations of ground water level and pore water pressure even though there is some time delay for the experiment before the changes in the ground water level and pore water pressure after rainfall are observed, while the numerical analyses not.

Analysis of Ground Subsidence according to Tunnel Passage in Geological Vulnerable Zone (지질취약구간 터널통과에 따른 지반침하량 분석)

  • Choi, Jung-Youl;Yang, Gyu-Nam;Kim, Tae-Jun;Chung, Jee Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.393-399
    • /
    • 2020
  • In this study, the subsidence behavior caused by groundwater ex-flow in a limestone cavity encountered during tunnel excavation was quantified based on numerical analysis and the effect was analyzed. Based on the groundwater level and surface subsidence surveyed at the site, a numerical analysis technique was applied to analyze the characteristics of the subsidence behavior according to the tunnel passage of the geological vulnerabilities. The results of groundwater seepage-coupled analysis were analyzed to reflect the actual ground subsidence behavior. As a result of the study, it was analyzed that the ground subsidence due to the tunnel excavation in the limestone common section(the geological vulnerable zone) was analyzed that the dramatical decrease in groundwater level was the main cause. As a result of numerical analysis, it was analyzed that the long-term cumulative settlement of the asphalt surface after the groundwater ex-flow was 76~118mm due to the reduction of the volume of the soil layer due to the decrease in the groundwater level, and the settlement amount increased as the depth of the soil layer increased.

Probabilistic Seepage Analysis by the Finite Element Method Considering Spatial Variability of Soil Permeability (투수계수의 공간적 변동성을 고려한 유한요소법에 의한 확률론적 침투해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.93-104
    • /
    • 2011
  • In this paper, a numerical procedure of probabilistic steady seepage analysis that considers the spatial variability of soil permeability is presented. The procedure extends the deterministic analysis based on the finite element method to a probabilistic approach that accounts for the uncertainties and spatial variation of the soil permeability. Two-dimensional random fields are generated based on a Karhunen-Lo$\grave{e}$ve expansion in a fashion consistent with a specified marginal distribution function and an autocorrelation function. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses were performed to verify the application potential of the proposed method and to study the effects of uncertainty due to the spatial heterogeneity on the seepage behavior of soil foundation beneath water retaining structure with a single sheet pile wall. The results showed that the probabilistic framework can be used to efficiently consider the various flow patterns caused by the spatial variability of the soil permeability in seepage assessment for a soil foundation beneath water retaining structures.

수압 터널의 해석 및 적용 사례

  • Jang, Seung-Jin;Lee, Seong-Suk;Kim, Ju-Beom
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.165-173
    • /
    • 1996
  • 본 기술 자료에서는 수압 터널에서 침투 수압을 고려한 터널 주위 암반의 응력 상태에 대한 수치 해석 방법, 해석 결과의 이용에 대하여 실제 수압 터널의 예를 들어 소개한다. 수압 터널의 안전성은 터널 주위 암반의 안전성에 의해 좌우되며 암반의 안전성은 Mohr-Coulomb의 파괴론을 사용하여 암반의 응력에 대한 안전율을 산정하여 판단한다. 산정된 암반의 안전율과 실제 수압 터널의 거동을 비교하여 수치 해석의 적정성을 판단하며 수압 터널의 보강 방법을 제안한다.

  • PDF

Numerical Analysis of the Seepage from and Stability of a Mine Waste-dump Slope during Rainfall (강우시 광산폐기물 적치사면의 침투 및 안정성에 대한 수치해석)

  • Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.57-66
    • /
    • 2015
  • A numerical analysis was performed of the seepage from and stability of a mine waste-dump slope in Imgi, Busan, considering rainfall intensity. The 40-45° slope angle of the waste dump is relatively steep, and the depth of the waste dump down to bedrock is 7-8 m. The groundwater level was 6.6 m below the surface. Various laboratory tests on samples obtained from the waste dump were performed to determine the input data for seepage and stability analyses of the waste-dump slope during rainfall. The results of seepage analysis for various rainfall intensities using the SEEP/W program show that the wetting front moved down with increasing rainfall duration. When the rainfall intensity was > 50 mm/ hour and the duration was > 24 hours, the waste dump became fully saturated because the wetting front reached the groundwater level. The results of slope stability analysis coupled with seepage analysis using the SLOPE/W program show that the safety factor of the slope decreased as the wetting front moved down due to rainfall infiltration. After continuous rainfall for 5-6 hours, the safety factor of the slope suddenly decreased but then recovered and converged. The sudden decrease was induced by an increase in pore-water pressure and a decrease in matric suction down to a certain depth as the wetting front approached the potential sliding surface.

A Study on Analysis Technique for Chloride Penetration in Cracked Concrete under Combined Deterioration (복합열화에 노출된 균열부 콘크리트 내의 염화물 침투 해석 기법에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.359-366
    • /
    • 2007
  • Recently, analysis researches on durability are focused on chloride attack and carbonation due to increased social and engineering significance. Generally, chloride penetration and carbonation occur simultaneously except for in submerged condition and chloride behavior in carbonated concrete is evaluated to be different from that in normal concrete. Furthermore, if unavoidable crack occurs in concrete, it influences not only single attack but also coupled deterioration more severely. This is a study on analysis technique with system dynamics for chloride penetration in concrete structures exposed to coupled chloride attack and carbonation through chloride diffusion, permeation, and carbonation reaction. For the purpose, a modeling for chloride behavior considering diffusion and permeation is performed through previous models for early-aged concrete such as MCHHM (multi component hydration heat model) and MPSFM (micro pore structure formation). Then model for combined deterioration is developed considering changed characteristics such as pore distribution, saturation and dissociation of bound chloride content under carbonation. The developed model is verified through comparison with previous experimental data. Additionally, simulation for combined deterioration in cracked concrete is carried out through utilizing previously developed models for chloride penetration and carbonation in cracked concrete. From the simulated results, CCTZ (chloride-carbonation transition zone) for evaluating combined deterioration is proposed. It is numerically verified that concrete with slag has better resistance to combined deterioration than concrete with OPC in sound and cracked concrete.

Estimation of Continuous Infiltration Process by Unsaturated Permeability (불포화투수계수를 이용한 지반의 연속 침투능 산정)

  • Han, Heui-Soo;Lee, Jung-Sik;Jang, Jin-Uk;Yang, Nam-Young
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.137-146
    • /
    • 2010
  • To estimate the accumulated infiltration, Horton's and Green-Ampt's equations are usually applied. Because the real infiltration is penetrated into the soil continuously, to cover the problems of the conventional equations derived from the discontinuous infiltration system, new infiltration equation is derived from the concepts of continuous infiltration system. Furthermore, infiltration tests were done to compare the results from the conventional Horton's and Green-Ampt's equations and newly derived equation. Unsaturated permeability is the function of water content ratio or saturation degree, which affects directly to the infiltration capacity and accumulated infiltration. Therefore, the variation term of unsaturated permeability is inserted into the new equation to estimate the proper infiltration capacity and accumulated infiltration. It will make the more accurate analysis for the safety of structure and the behavior of groundwater.

Tide, swash infiltration and groundwater behavior (조석, 파랑의 침투와 지하수 거동)

  • Kang, Hong-Yoon;Kobayashi, Nobuhisa
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.153-162
    • /
    • 1997
  • 시간평균된 해안의 지하수위는 내륙쪽에 강우가 없는 경우에도 평균해수면 (Mean Sea Level)보다 1내지 2미터 정도 높은 것으로 관측되었다. 이러한 해안의 지하수위상승현상은 주로 파랑과 조석의 작용에 의해 나타난다. 본 연구에서는 지하수위상승에 미치는 조석 및 파랑의 효과를 현장관측결과를 통해 정량적으로 보여주었으며, 또한 이들 각각의 작용에 기인한 지하수위상승에 대한 해석해 및 최근 이론들을 제시하였다. 특히, 최근 지하수의 수리학적 모델링에 관한 연구에서 파랑의 침투 (wave runup infiltration)효과의 중요성이 강조되었는 바, 본 연구를 통해 종래에 보고된 바 없는 swash zone (shoreline과 runup limit사이)에서의 파랑의 침투속도(분포)를 지하수위관측자료를 이용해 간접적으로 산정함으로써 해안의 지하수위예측모델링을 보다 정확히 수행할 수 있으리라 사료된다.

  • PDF

Effect of Rainfall-Induced Infiltration on Unsaturated Weathered Soils with Varying Clay Contents (강우시 점토함유량에 따른 화강풍화토의 불포화 침투 특성)

  • 유남동;정상섬;김재홍;박성완
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.159-166
    • /
    • 2004
  • In this study, experiments on the SWCC were performed in order to find out the characteristics of unsaturated soil and to analyze the stability of unsaturated weathered slopes with rainfall-induced wetting. Several soil types classified by mixture portion of clay (CH) in the weathered soil (SW) were used in experimental tests. To achieve the SWCC, the filter paper method was used on SW with varying clay contents. A tensiometer test was used for measuring wetting front suction of the soils in a laboratory with varying relative densities. Based on the experimental results, it is shown that the wetting front suction increases as clay contest of mixture soil increases : in particular, the wetting front suction increases sharply as the clay contents increase. It is also found that wetting front suction affects the initial wetting band depth and stability of the slope.

Study on the Characteristics of Infinite Slope Failures by Probabilistic Seepage Analysis (확률론적 침투해석을 통한 무한사면 파괴의 특성 연구)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.5-18
    • /
    • 2014
  • Many regions around the world are vulnerable to rainfall-induced slope failures. A variety of methods have been proposed for revealing the mechanism of slope failure initiation. Current analysis methods, however, do not consider the effects of non-homogeneous soil profiles and variable hydraulic responses on rainfall-induced slope failures. In this study, probabilistic stability analyses were conducted for weathered residual soil slopes with different soil thickness overlying impermeable bedrock to study the rainfall-induced failure mechanisms depending on the soil thickness. A series of seepage and stability analyses of an infinite slope based on one-dimensional random fields were performed to consider the effects of uncertainty due to the spatial heterogeneity of hydraulic conductivity on the failure of unsaturated slopes due to rainfall infiltration. The results showed that a probabilistic framework can be used to efficiently consider various failure patterns caused by spatial variability of hydraulic conductivity in rainfall infiltration assessment for a infinite slope.